# Linear prediction with NA, Imputation versus specific methods 

Alexis Ayme

Under the supervision of:
Claire Boyer, Aymeric Dieuleveut and Erwan Scornet


## Background

○ Growing mass of data => NA (not attributed)/missing values

## Background

- Growing mass of data => NA (not attributed)/missing values
o Different sources:

1. Bugs
2. Cost, sensitive data
3. Multiplication of sources (i.e. merging)


## Background

- Growing mass of data => NA (not attributed)/missing values
o Different sources:

1. Bugs
2. Cost, sensitive data
3. Multiplication of sources (i.e. merging)



## Background

○ Growing mass of data => NA (not attributed)/missing values
o Different sources:

1. Bugs
2. Cost, sensitive data
3. Multiplication of sources (i.e. merging)


- Growing mass of data => High-dimensional dataset

1. Cost
2. Multiplication of sources (i.e. merging)
3. Genotype, text


## Supervised learning with missing values (NA)



## Supervised learning with missing values (NA)



## Supervised learning with missing values (NA)



O Missing pattern: $M_{i} \in\{0,1\}^{d}$


O Input: $\quad Z=\left(X_{\mathrm{obs}}, M\right)$
o Output: $Y \in \mathbb{R}$

Goal: Predict on test sample minimizing

$$
R_{\text {missing }}(f)=\mathbb{E}_{Z, Y}\left[(Y-f(Z))^{2}\right]
$$

## Supervised learning vs inference

O Linear model for complete inputs

$$
Y_{i}=\beta^{\top} X_{i}+\epsilon_{i}
$$

with $\mathbb{E}\left[\epsilon_{i}^{2}\right]=\sigma^{2}$ and:
O if model is well specified: $\mathbb{E}\left[\epsilon_{i} \mid X_{i}\right]=0$
O else: $\mathbb{E}\left[\epsilon_{i} X_{i}\right]=0$

## Supervised learning vs inference

O Linear model for complete inputs

$$
Y_{i}=\beta^{\top} X_{i}+\epsilon_{i}
$$

with $\mathbb{E}\left[\epsilon_{i}^{2}\right]=\sigma^{2}$ and:
O if model is well specified: $\mathbb{E}\left[\epsilon_{i} \mid X_{i}\right]=0$
O else: $\mathbb{E}\left[\epsilon_{i} X_{i}\right]=0$

○ Missing data mechanism


## Supervised learning vs inference

o Linear model for complete inputs

$$
Y_{i}=\beta^{\top} X_{i}+\epsilon_{i}
$$

with $\mathbb{E}\left[\epsilon_{i}^{2}\right]=\sigma^{2}$ and:
O if model is well specified: $\mathbb{E}\left[\epsilon_{i} \mid X_{i}\right]=0$
○ else: $\mathbb{E}\left[\epsilon_{i} X_{i}\right]=0$

O Inference: estimate the model parameter $\beta$

○ Missing data mechanism


Rubin 76, Little 92,
Jones 96; Robins et al 94

## Supervised learning vs inference

O Linear model for complete inputs

$$
Y_{i}=\beta^{\top} X_{i}+\epsilon_{i}
$$

with $\mathbb{E}\left[\epsilon_{i}^{2}\right]=\sigma^{2}$ and:
O if model is well specified: $\mathbb{E}\left[\epsilon_{i} \mid X_{i}\right]=0$
○ else: $\mathbb{E}\left[\epsilon_{i} X_{i}\right]=0$

O Inference: estimate the model parameter $\beta$

- Prediction: predict $Y$ on a new observation $X$

Estimation of $\beta$ is not sufficient

$$
X=(\mathrm{NA}, 8,0, \mathrm{NA}, 6,2)
$$

○ Missing data mechanism


## Introduction: Handle missing values

## o Handle missing values with:

1. Impute-then-regress procedure (e.g. imputation by 0 )
2. Specific method (e.g. pattern-by-pattern)

## Introduction: Handle missing values

o Handle missing values with:

1. Impute-then-regress procedure (e.g. imputation by 0 )
2. Specific method (e.g. pattern-by-pattern)

O Low dimension $n \rightarrow+\infty$


## Introduction: Handle missing values

## o Handle missing values with:

1. Impute-then-regress procedure (e.g. imputation by 0 )
2. Specific method (e.g. pattern-by-pattern)

O Low dimension $n \rightarrow+\infty$


○ High dimension $d \rightarrow+\infty$


## In this talk



## 1) Specific method: Pattern-by-Pattern regression

- Bayes predictor decomposition

$$
f^{\star}(Z)=\sum_{m \in\{0,1\}^{d}} f_{m}^{\star}\left(X_{\mathrm{obs}(\mathrm{~m})}\right) \mathbf{1}_{M=m}
$$

Local Bayes prediction for the missing pattern $(M=m)$

Proposition: (Le Morvan et al. 2020)
Under linear model and several missing data scenarios (including MNAR), $f_{m}^{\star}$ are linear

- Pattern-by-pattern predictor

$$
\hat{f}(Z)=\sum_{m \in\{0,1\}^{d}} \hat{f}_{m}\left(X_{\mathrm{obs}(\mathrm{~m})}\right) \mathbf{1}_{M=m}
$$

Local Least-Square regression on

$$
\left\{\left(X_{i, o b s}, Y_{i}\right), M_{i}=m\right\}
$$

## 1) Specific method: Pattern-by-Pattern regression

- Bayes predictor decomposition

$$
f^{\star}(Z)=\sum_{m \in\{0,1\}^{d}} f_{m}^{\star}\left(X_{o b s(m)}\right) \mathbf{1}_{M=m}
$$

Local Bayes prediction for the missing pattern $(M=m)$

Proposition: (Le Morvan et al. 2020)
Under linear model and several missing data scenarios (including MNAR), $f_{m}^{\star}$ are linear

- Pattern-by-pattern predictor

$$
\begin{aligned}
& \hat{f}(Z)=\sum_{m \in\{0,1\}^{d}} \hat{f}_{m}\left(X_{o b s(m)}\right) \mathbf{1}_{M=m} \\
& \text { Local Least-Square regression on }
\end{aligned}
$$

$$
\left\{\left(X_{i, o b s}, Y_{i}\right), M_{i}=m\right\}
$$

O Definition: excess risk

$$
\mathscr{E}(\hat{f})=\mathbb{E}\left[\left(\hat{f}(Z)-f^{\star}(Z)\right)^{2}\right]
$$

- Definition: missing pattern complexity

$$
\mathfrak{C}_{p}\left(\frac{d}{n}\right)=\sum_{m \in\{0,1\}^{d}} p_{m} \wedge \frac{d}{n}
$$

## 1) Specific method: Pattern-by-Pattern regression

- Bayes predictor decomposition

$$
f^{\star}(Z)=\sum_{m \in\{0,1\}^{d}} f_{m}^{\star}\left(X_{o b s(m)}\right) \mathbf{1}_{M=m}
$$

Local Bayes prediction for the missing pattern $(M=m)$

Proposition: (Le Morvan et al. 2020)
Under linear model and several missing data scenarios (including MNAR), $f_{m}^{\star}$ are linear

- Pattern-by-pattern predictor

$$
\hat{f}(Z)=\sum_{m \in\{0,1\}^{d}} \hat{f}_{m}\left(X_{o b s(m)}\right) \mathbf{1}_{M=m}
$$

Local Least-Square regression on

$$
\left\{\left(X_{i, o b s}, Y_{i}\right), M_{i}=m\right\}
$$

o Definition: excess risk

$$
\mathscr{E}(\hat{f})=\mathbb{E}\left[\left(\hat{f}(Z)-f^{\star}(Z)\right)^{2}\right]
$$

- Definition: missing pattern complexity

$$
\mathfrak{C}_{p}\left(\frac{d}{n}\right)=\sum_{m \in\{0,1\}^{d}} p_{m} \wedge \frac{d}{n}
$$

Theorem:
Under Lipschitz and Sub-Gaussian assumptions

$$
\mathscr{E}(\hat{f}) \leq A \log (n) \mathfrak{C}_{p}\left(\frac{d}{n}\right)+\text { Approx }
$$

## 1) Specific method: Pattern-by-Pattern regression

- Bayes predictor decomposition

$$
f^{\star}(Z)=\sum_{m \in\{0,1\}^{d}} f_{m}^{\star}\left(X_{o b s(m)}\right) \mathbf{1}_{M=m}
$$

Local Bayes prediction for the missing pattern $(M=m)$

Proposition: (Le Morvan et al. 2020)
Under linear model and several missing data scenarios (including MNAR), $f_{m}^{\star}$ are linear

- Pattern-by-pattern predictor

$$
\hat{f}(Z)=\sum_{m \in\{0,1\}^{d}} \hat{f}_{m}\left(X_{o b s(m)}\right) \mathbf{1}_{M=m}
$$

Local Least-Square regression on

$$
\left\{\left(X_{i, o b s}, Y_{i}\right), M_{i}=m\right\}
$$

O Definition: excess risk

$$
\mathscr{E}(\hat{f})=\mathbb{E}\left[\left(\hat{f}(Z)-f^{\star}(Z)\right)^{2}\right]
$$

- Definition: missing pattern complexity

$$
\mathfrak{C}_{p}\left(\frac{d}{n}\right)=\sum_{m \in\{0,1\}^{d}} p_{m} \wedge \frac{d}{n}
$$

Theorem:
Under Lipschitz and Sub-Gaussian assumptions

$$
\mathscr{E}(\hat{f}) \leq A \log (n) \mathscr{C}_{p}\left(\frac{d}{n}\right)+\text { Approx }
$$

## Examples:

1. Uniform distribution: $\mathfrak{C}_{p}\left(\frac{d}{n}\right)=2^{d} \frac{d}{n}$
2. Bernoulli distribution: $M_{j} \sim \mathscr{B}(1-\rho)$ and $1-\rho \leq \frac{d}{n}$

$$
\mathfrak{S}_{p}\left(\frac{d}{n}\right) \leq \frac{d^{2}}{n}
$$

## 1) Specific method: Pattern-by-Pattern regression

○ Minimax risk

$$
\begin{aligned}
& \text { Worst case on a class of problem } \mathscr{P}_{p} \\
& \mathscr{E}_{\text {mini }}(p)=\inf _{\tilde{f}} \sup _{\mathbb{P} \in \mathscr{P}_{p}} \mathbb{E}_{\mathbb{P}}\left[\left(\tilde{f}(Z)-f^{\star}(Z)\right)^{2}\right] \\
& \text { Best algorithm }
\end{aligned}
$$

where $\mathscr{P}_{p}$ represents a class of data distributions o for which the missing pattern distribution is $p$ o under Lipschitz and Sub-Gaussian assumptions

## 1) Specific method: Pattern-by-Pattern regression

○ Minimax risk

where $\mathscr{P}_{p}$ represents a class of data distributions O for which the missing pattern distribution is $p$ o under Lipschitz and Sub-Gaussian assumptions

o Lower bound still holds when $\mathscr{P}_{p}$ includes MAR missing values

## 1) Specific method: Pattern-by-Pattern regression

○ Minimax risk

$$
\begin{aligned}
& \text { Worst case on a class of problem } \mathscr{P}_{p} \\
& \mathscr{E}_{\text {mini }}(p)=\inf _{\tilde{f}} \sup _{\mathbb{P} \in \mathscr{P}_{p}} \mathbb{E}_{\mathbb{P}}\left[\left(\tilde{f}(Z)-f^{\star}(Z)\right)^{2}\right] \\
& \text { Best algorithm }
\end{aligned}
$$

where $\mathscr{P}_{p}$ represents a class of data distributions O for which the missing pattern distribution is $p$ o under Lipschitz and Sub-Gaussian assumptions

o Lower bound still holds when $\mathscr{P}_{p}$ includes MAR missing values

## Examples

1. Uniform distribution: $\mathfrak{C}_{p}\left(\frac{1}{n}\right)=\frac{2^{d}}{n}, \mathfrak{C}_{p}\left(\frac{d}{n}\right)=2^{d} \frac{d}{n}$
2. Bernoulli distribution: $\mathfrak{C}_{p}\left(\frac{1}{n}\right)=\frac{d}{n}, \mathfrak{C}_{p}\left(\frac{d}{n}\right)=\frac{d^{2}}{n}$

O without stronger assumption, best rate can be exponential!

## 1) Specific method:



## 2) Imputation by 0



## 2) Imputation by 0



## 2) Imputation by 0: Framework

- Linear prediction risk on imputed data:

$$
R_{\mathrm{imp}}(\theta)=\mathbb{E}\left[\left(Y-\theta^{\top} X_{\mathrm{imp}}\right)^{2}\right]
$$

## 2) Imputation by 0: Framework

- Linear prediction risk on imputed data:

$$
R_{\mathrm{imp}}(\theta)=\mathbb{E}\left[\left(Y-\theta^{\top} X_{\mathrm{imp}}\right)^{2}\right]
$$

- Imputation Bias:

Risk of the optimal linear predictor on complete data


Risk of the optimal linear predictor on 0-imputed data

## 2) Imputation by 0: Framework

- Linear prediction risk on imputed data:

$$
R_{\mathrm{imp}}(\theta)=\mathbb{E}\left[\left(Y-\theta^{\top} X_{\mathrm{imp}}\right)^{2}\right]
$$

- Imputation Bias:

Risk of the optimal linear predictor on complete data


Risk of the optimal linear predictor on 0-imputed data

○ Missing values


Bernoulli Model: Missing values i.i.d

$$
M_{1}, \ldots, M_{d} \sim \mathscr{B}(1-\rho)
$$

## 2) Imputation by 0: Toy example

- Complete Model:

$$
Y=X_{1}
$$

$$
X=\left(X_{1}, X_{1}, \ldots, X_{1}\right)
$$

$$
\theta^{\star}=(1,0, \ldots, 0)^{\top}
$$

$$
R^{\star}=0
$$

○ With imputed missing values: $\quad M_{1}, \ldots, M_{d} \sim \mathscr{B}(1 / 2)$

## 2) Imputation by 0 : Toy example

- Complete Model:

$$
\begin{aligned}
& Y=X_{1} . \\
& X=\left(X_{1}, X_{1}, \ldots, X_{1}\right) \\
& \theta^{\star}=(1,0, \ldots, 0)^{\top} \\
& R^{\star}=0
\end{aligned}
$$

○ With imputed missing values: $\quad M_{1}, \ldots, M_{d} \sim \mathscr{B}(1 / 2)$

$$
\theta_{1}=(1,0, \ldots, 0)^{\top}
$$

$$
\theta_{1}^{\top} X_{\mathrm{imp}}=X_{1} M_{1}
$$



$$
R\left(\theta_{1}\right)=\frac{1}{2} \mathbb{E}\left[X_{1}^{2}\right]
$$

## 2) Imputation by 0: Toy example

- Complete Model:

$$
\begin{aligned}
& Y=X_{1} . \\
& X=\left(X_{1}, X_{1}, \ldots, X_{1}\right) \\
& \theta^{\star}=(1,0, \ldots, 0)^{\top} \\
& R^{\star}=0
\end{aligned}
$$

- With imputed missing values:
$M_{1}, . ., M_{d} \sim \mathscr{B}(1 / 2)$

$$
\theta_{1}=(1,0, \ldots, 0)^{\top}
$$

$$
\theta_{2}=2(1 / d, 1 / d, \ldots, 1 / d)^{\top}
$$

$$
\theta_{1}^{\top} X_{\mathrm{imp}}=X_{1} M_{1}
$$



$$
R\left(\theta_{1}\right)=\frac{1}{2} \mathbb{E}\left[X_{1}^{2}\right]
$$



$$
B_{\mathrm{imp}}=R^{\star}-R_{0}^{\star} \leq \frac{1}{d} \mathbb{E}\left[X_{1}^{2}\right]
$$

## 2) Imputation by $0=$ implicit ridge?

O Ridge penalization

$$
R_{\lambda}(\theta)=R(\theta)+\lambda\|\theta\|_{2}^{2}
$$

$$
\begin{aligned}
& \text { Theorem: Under Bernoulli model and } \Sigma_{j, j}=1 \text { for all } j \in[d], \\
& \qquad R_{\mathrm{imp}}(\theta)=R(\rho \theta)+\rho(1-\rho)\|\theta\|_{2}^{2}
\end{aligned}
$$

## 2) Imputation by $0=$ implicit ridge?

○ Ridge penalization

$$
R_{\lambda}(\theta)=R(\theta)+\lambda\|\theta\|_{2}^{2}
$$

$$
\begin{aligned}
& \text { Theorem: Under Bernoulli model and } \Sigma_{j, j}=1 \text { for all } j \in[d], \\
& \qquad R_{\mathrm{imp}}(\theta)=R(\rho \theta)+\rho(1-\rho)\|\theta\|_{2}^{2}
\end{aligned}
$$



1. Imputation induce a ridge penalization (Optimal predictor has a small norm)

## 2) Imputation by $0=$ implicit ridge?

O Ridge penalization

$$
R_{\lambda}(\theta)=R(\theta)+\lambda\|\theta\|_{2}^{2}
$$

$$
\begin{aligned}
& \text { Theorem: Under Bernoulli model and } \Sigma_{j, j}=1 \text { for all } j \in[d], \\
& \qquad R_{\text {imp }}(\theta)=R(\rho \theta)+\rho(1-\rho)\|\theta\|_{2}^{2}
\end{aligned}
$$

- Ridge bias

$$
B_{\text {ridge }, \lambda}=\inf _{\theta}\left\{R(\theta)-R\left(\theta_{\star}\right)+\lambda\|\theta\|_{2}^{2}\right\}
$$

Theorem: Under Bernoulli model and $\Sigma_{j, j}=1$ for all $j \in[d]$,

$$
B_{\mathrm{imp}}=B_{\text {ridge }, \lambda_{\mathrm{imp}}}
$$

where $\lambda_{\text {imp }}=\frac{\rho}{1-\rho}$


1. Imputation induce a ridge penalization (Optimal predictor has a small norm)

## 2) Imputation by $0=$ implicit ridge?

O Ridge penalization

$$
R_{\lambda}(\theta)=R(\theta)+\lambda\|\theta\|_{2}^{2}
$$

$$
\begin{aligned}
& \text { Theorem: Under Bernoulli model and } \Sigma_{j, j}=1 \text { for all } j \in[d] \\
& \qquad R_{\mathrm{imp}}(\theta)=R(\rho \theta)+\rho(1-\rho)\|\theta\|_{2}^{2}
\end{aligned}
$$

○ Ridge bias

$$
B_{\text {ridge }, \lambda}=\inf _{\theta}\left\{R(\theta)-R\left(\theta_{\star}\right)+\lambda\|\theta\|_{2}^{2}\right\}
$$

$$
\begin{aligned}
& \text { Theorem: Under Bernoulli model and } \Sigma_{j, j}=1 \text { for all } j \in[d] \\
& \qquad B_{\mathrm{imp}}=B_{\text {ridge }, \lambda_{\mathrm{imp}}}
\end{aligned}
$$

$$
\text { where } \lambda_{\mathrm{imp}}=\frac{\rho}{1-\rho}
$$



1. Imputation induce a ridge penalization (Optimal predictor has a small norm)
2. Imputation by 0 seem to be at the same price of ridge penalization
3. Penalization parameter $\lambda_{\text {imp }}$ depends only on $1-\rho$ the proportion of missing values.

## 2) Imputation by 0: Illustration on low rank data

○ Low rank data (or spiked): $\quad \operatorname{rank}(\Sigma) \approx r$

$$
B_{\mathrm{imp}} \lesssim \frac{r}{d} \mathbb{E} Y^{2}
$$

Eigenvalue


Spectrum of covariance matrix

## 2) Imputation by 0: Illustration on low rank data

○ Low rank data (or spiked): $\quad \operatorname{rank}(\Sigma) \approx r$

$$
B_{\mathrm{imp}} \lesssim \frac{r}{d} \mathbb{E} Y^{2}
$$

Eigenvalue


Spectrum of covariance matrix


## 2) Imputation by 0 : Learn imputed data with SGD

- SGD recursion: with constant learning rate $\gamma=\frac{1}{d \sqrt{n}}$

$$
\left\{\begin{array}{l}
\theta_{0}=0 \\
\theta_{\mathrm{imp}, t}=\left[I-\gamma X_{\mathrm{imp}, t} X_{\mathrm{imp}, t}^{\top}\right] \theta_{\mathrm{imp}, t-1}+\gamma Y_{t} X_{\mathrm{imp}, t}
\end{array}\right.
$$

o Polyak Ruppert average:

$$
\bar{\theta}_{\mathrm{imp}, n}=\frac{1}{n+1} \sum_{t=1}^{n} \theta_{\mathrm{imp}, t}
$$

## 2) Imputation by 0 : Learn imputed data with SGD

- SGD recursion: with constant learning rate $\gamma=\frac{1}{d \sqrt{n}}$

$$
\left\{\begin{array}{l}
\theta_{0}=0 \\
\theta_{\mathrm{imp}, t}=\left[I-\gamma X_{\mathrm{imp}, t} X_{\mathrm{imp}, t}^{\top}\right] \theta_{\mathrm{imp}, t-1}+\gamma Y_{t} X_{\mathrm{imp}, t}
\end{array}\right.
$$

o Polyak Ruppert average:

$$
\bar{\theta}_{\mathrm{imp}, n}=\frac{1}{n+1} \sum_{t=1}^{n} \theta_{\mathrm{imp}, t}
$$

> Theorem: Under classical SGD assumptions,
> $\mathbb{E}\left[R_{\text {imp }}\left(\bar{\theta}_{\mathrm{imp}, \mathrm{n}}\right)\right]-R^{\star} \leq B_{\mathrm{imp}}+\frac{d}{\sqrt{n}}\left\|\theta_{\mathrm{imp}}^{\star}\right\|_{2}^{2}+\frac{\sigma^{2}}{\sqrt{n}}$

2) Imputation by 0: Learn imputed data with SGD
o SGD recursion:

$$
\left\{\begin{array}{l}
\theta_{0}=0 \\
\theta_{\mathrm{imp}, t}=\left[I-\gamma X_{\mathrm{imp}, t} X_{\mathrm{imp}, t}^{\top}\right] \theta_{\mathrm{imp}, t-1}+\gamma Y_{t} X_{\mathrm{imp}, t}
\end{array}\right.
$$

o Polyak Ruppert average:

$$
\bar{\theta}_{\mathrm{imp}, n}=\frac{1}{n+1} \sum_{t=1}^{n} \theta_{\mathrm{imp}, t}
$$

Theorem: Under classical SGD assumptions,

$$
\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp}, \mathrm{n}}\right)\right]-R^{\star} \leq B_{\mathrm{imp}}+\frac{d}{\sqrt{n}}\left\|\theta_{\mathrm{imp}}^{\star}\right\|_{2}^{2}+\frac{\sigma^{2}}{\sqrt{n}}
$$

o Illustration on low rank:

$$
\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp}, \mathrm{n}}\right)\right]-R^{\star} \leq\left(\frac{1}{\rho \sqrt{n}}+\frac{1-\rho}{d}\right) \frac{r}{\rho} \mathbb{E} Y^{2}+\frac{\sigma^{2}}{\sqrt{n}}
$$

## 2) Imputation by 0 : Learn imputed data with SGD

o SGD recursion:

$$
\left\{\begin{array}{l}
\theta_{0}=0 \\
\theta_{\mathrm{imp}, t}=\left[I-\gamma X_{\mathrm{imp}, t} X_{\mathrm{imp}, t}^{\top}\right] \theta_{\mathrm{imp}, t-1}+\gamma Y_{t} X_{\mathrm{imp}, t}
\end{array}\right.
$$

o Polyak Ruppert average:

$$
\bar{\theta}_{\mathrm{imp}, n}=\frac{1}{n+1} \sum_{t=1}^{n} \theta_{\mathrm{imp}, t}
$$

Theorem: Under classical SGD assumptions,
$\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp}, \mathrm{n}}\right)\right]-R^{\star} \leq B_{\mathrm{imp}}+\frac{d}{\sqrt{n}}\left\|\theta_{\mathrm{imp}}^{\star}\right\|_{2}^{2}+\frac{\sigma^{2}}{\sqrt{n}}$
o Illustration on low rank:
$\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp,n}}\right)\right]-R^{\star} \leq\left(\frac{1}{\rho \sqrt{n}}+\frac{1-\rho}{d}\right) \frac{r}{\rho} \mathbb{E} Y^{2}+\frac{\sigma^{2}}{\sqrt{n}}$

1. We leverage on implicit regularization.
2. Streaming online (one passe)
3. Trade-off between imputation bias and initial condition.
4. Imputation bias vanishes for $d \gg \sqrt{n}$

## 2) Imputation by 0 : Conclusion

1. In practice: In high-dimension imputation (even naive) out performs specific methods designed to handle missing values.
2. Imputation by 0 induces a Ridge penalization.
3. Imputation bias vanishes with dimension. As a consequence missing values are not an issue in high dimension (correlated setting).
4. The regime $d \gg \sqrt{n}$ leads to slow rates of consistency.


## Conclusion

2) Impute then regress:

Naive imputation (A. et al. 2023)


## References

Ayme, A., Boyer, C., Dieuleveut, A., and Scornet, E. Naive imputation implicitly regularizes high-dimensional linear models (link)
Ayme, A., Boyer, C., Dieuleveut, A., and Scornet, E. Near- optimal rate of consistency for linear models (link) Agarwal, A., Shah, D., Shen, D., and Song, D. On robustness of principal component regression

Le Morvan, M., Prost, N., Josse, J., Scornet, E., and Varo- quaux, G. Linear predictor on linearly-generated data with missing values: non consistency and solutions.
Le Morvan, M., Josse, J., Moreau, T., Scornet, E., and Varoquaux, G. NeuMiss networks: differentiable programming for supervised learning with missing values. Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. What's a good imputation to predict with missing values?

Rubin, D. B. Inference and missing data.

