Linear prediction with NA, Imputation versus specific methods

Alexis Ayme

Under the supervision of:
Claire Boyer, Aymeric Dieuleveut and Erwan Scornet

Background

○ Growing mass of data => NA (not attributed)/missing values
o Different sources:

1. Bugs
2. Cost
3. Multiplication of sources (i.e. merging)
4. Sensitive data

○ Growing mass of data => High-dimensional dataset

1. Cost
2. Multiplication of sources (i.e. merging)
3. Genotype, text

Introduction: Supervised learning with missing values (NA)

Introduction: Supervised learning with missing values (NA)

- Handle missing values with:

1. Impute then regress procedure
2. Specific method

- Low dimension $n \rightarrow+\infty$

- High dimension $d \rightarrow+\infty$

Introduction: Naive imputation

Introduction

○ Missing values

Bernoulli Model: Missing values
i.i.d $M_{1}, \ldots, M_{d} \sim \mathscr{B}(1-\rho)$

- In this talk:

1) High-dimensional dataset

$$
d \gg n
$$

2) Predict on imputed data

$$
R_{\mathrm{imp}}(f)=\mathbb{E}_{X, Y}\left[\left(Y-f\left(X_{\mathrm{imp}}\right)\right)^{2}\right]
$$

3) Comparison with the complete case

$$
R(f)=\mathbb{E}_{X, Y}\left[(Y-f(X))^{2}\right]
$$

Definition

O Linear model (well/miss-specified): $\beta \in \mathbb{R}^{d}, \mathbb{E}[\epsilon X]=0$

$$
Y=\theta_{\star}^{\top} X+\epsilon
$$

Imputation bias:

$$
B_{\mathrm{imp}}=R_{\mathrm{imp}}^{\star}-R^{\star}
$$

o Bayes risk:

$$
\begin{aligned}
& R^{\star}=\inf _{\theta} R(\theta) \\
& R_{\mathrm{imp}}^{\star}=\inf _{\theta} R_{\mathrm{imp}}(\theta)
\end{aligned}
$$

Imputation by $0=$ implicit ridge?

- Ridge penalization

$$
R_{\lambda}(\theta)=R(\theta)+\lambda\|\theta\|_{2}^{2}
$$

Theorem 2: Under Bernoulli model and $\Sigma_{j, j}=1$ for all $j \in[d]$,

$$
R_{\mathrm{imp}}(\theta)=R(\rho \theta)+\rho(1-\rho)\|\theta\|_{2}^{2}
$$

○ Ridge bias

$$
B_{\text {ridge }, \lambda}=\inf _{\theta}\left\{R(\theta)-R\left(\theta_{\star}\right)+\lambda\|\theta\|_{2}^{2}\right\}
$$

Theorem 2: Under Bernoulli model and $\Sigma_{j, j}=1$ for all $j \in[d]$

$$
B_{\mathrm{imp}}=B_{\text {ridge }, \lambda_{\mathrm{imp}}}
$$

1. Optimal predictor has a small norm
2. TAKE AT HOME: Imputation induce a Ridge penalization
3. No strong assumptions on X
4. $\lambda_{\text {imp }}$ depends only on $1-\rho$ the proportion of missing values.
5. Available for all MCAR setting with another $\lambda_{\text {imp }}$
6. Bias decreases with the dimension
7. TAKE AT HOME: MCAR missing values seem to be at the same price of Ridge penalization

Illustration: on low rank data

○ Low rank data (or Spiked): $\quad \operatorname{rank}(\Sigma) \approx r$

$$
B_{\mathrm{imp}} \lesssim \frac{r}{d} \mathbb{E} Y^{2}
$$

Learn imputed data with SGD

O SGD recursion: with learning rate $\gamma=\frac{1}{d \sqrt{n}}$

$$
\left\{\begin{array}{l}
\theta_{0}=0 \\
\theta_{\mathrm{imp}, t}=\left[I-\gamma X_{\mathrm{imp}, t} X_{\mathrm{imp}, t}^{\top}\right] \theta_{\mathrm{imp}, t-1}+\gamma Y_{t} X_{\mathrm{imp}, t}
\end{array}\right.
$$

○ Polyak Ruppert average:

$$
\bar{\theta}_{\mathrm{imp}, n}=\frac{1}{n+1} \sum_{t=1}^{n} \theta_{\mathrm{imp}, t}
$$

Theorem 2: Under classical SGD assumptions,
$\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp}, \mathrm{n}}\right)\right]-R^{\star} \leq B_{\mathrm{imp}}+\frac{d}{\sqrt{n}}\left\|\theta_{\mathrm{imp}}^{2}\right\|_{2}^{2}+\frac{\sigma^{2}}{\sqrt{n}}$

Learn imputed data with SGD

o SGD recursion:

$$
\left\{\begin{array}{l}
\theta_{0}=0 \\
\theta_{\mathrm{imp}, t}=\left[I-\gamma X_{\mathrm{imp}, t} X_{\mathrm{imp}, t}^{\top}\right] \theta_{\mathrm{imp}, t-1}+\gamma Y_{t} X_{\mathrm{imp}, t}
\end{array}\right.
$$

○ Polyak Ruppert average:

$$
\bar{\theta}_{\mathrm{imp}, n}=\frac{1}{n+1} \sum_{t=1}^{n} \theta_{\mathrm{imp}, t}
$$

Theorem 2: Under classical SGD assumptions,
$\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp}, \mathrm{n}}\right)\right]-R^{\star} \leq B_{\mathrm{imp}}+\frac{d}{\sqrt{n}}\left\|\theta_{\mathrm{imp}}^{2}\right\|_{2}^{2}+\frac{\sigma^{2}}{\sqrt{n}}$
o Illustration on low rank:

$$
\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp}, \mathrm{n}}\right)\right]-R^{\star} \leq\left(\frac{1}{\rho \sqrt{n}}+\frac{1-\rho}{d}\right) \frac{r}{\rho} \mathbb{E} Y^{2}+\frac{\sigma^{2}}{\sqrt{n}}
$$

1. We leverage on implicit regularization.
2. Streaming online (one passe)
3. Trade-off between imputation bias and initial condition.
4. TAKE AT HOME: Imputation bias vanishes for $d \gg \sqrt{n}$

Conclusion

1. Imputation (even very cheap) out-performs specific method to handle missing values in high-dimension.
2. Imputation by 0 induce a Ridge penalization.
3. Imputation bias vanishes with dimension as a consequence missing values are not an issue in high dimension.
4. $d \gg \sqrt{n}$ regime leads to slow rates of consistency.

Toy example

- Complete Model:

$$
Y=X_{1}
$$

$X=\left(X_{1}, X_{1}, \ldots, X_{1}\right)$
$M_{1}, . ., M_{d} \sim \mathscr{B}(1 / 2)$.
$R^{\star}=0$

- With imputed missing values:

$$
\theta_{1}=(1,0, \ldots, 0)^{\top}
$$

$$
\theta_{2}=2(1 / d, 1 / d, \ldots, 1 / d)^{\top}
$$

$$
\begin{aligned}
& \theta_{2}^{\top} X_{\mathrm{imp}}=\frac{2 X_{1}}{d} \sum_{j} M_{J} \\
& R\left(\theta_{2}\right)=\frac{1}{d} \mathbb{E}\left[X_{1}^{2}\right]
\end{aligned}
$$

$$
\downarrow
$$

$$
B_{\text {imp }}=R^{\star}-R_{0}^{\star} \leq \frac{1}{d} \mathbb{E}\left[X_{1}^{2}\right]
$$

