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Abstract

Two different approaches exist to handle missing values for predic-
tion: either imputation, prior to fitting any predictive algorithms, or
dedicated methods able to natively incorporate missing values. While
imputation is widely (and easily) use, it is unfortunately biased when
low-capacity predictors (such as linear models) are applied afterward.
However, in practice, naive imputation exhibits good predictive per-
formance. In this paper, we study the impact of imputation in a
high-dimensional linear model with MCAR missing data. We prove
that zero imputation performs an implicit regularization closely re-
lated to the ridge method, often used in high-dimensional problems.
Leveraging on this connection, we establish that the imputation bias
is controlled by a ridge bias, which vanishes in high dimension. As a
predictor, we argue in favor of the averaged SGD strategy, applied to
zero-imputed data. We establish an upper bound on its generalization
error, highlighting that imputation is benign in the d ≫

√
n regime.

Experiments illustrate our findings.

1 Introduction

Missing data has become an inherent problem in modern data science. Indeed,
most real-world data sets contain missing entries due to a variety of reasons:
merging different data sources, sensor failures, difficulty to collect/access data
in sensitive fields (e.g., health), just to name a few. The simple, yet quite
extreme, solution of throwing partial observations away can drastically reduce
the data set size and thereby hinder further statistical analysis. Specific
methods should be therefore developed to handle missing values. Most of
them are dedicated to model estimation, aiming at inferring the underlying
model parameters despite missing values (see, e.g., Rubin, 1976). In this
paper, we take a different route and consider a supervised machine learning
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(ML) problem with missing values in the training and test inputs, for which
our aim is to build a prediction function (and not to estimate accurately the
true model parameters).

Prediction with NA A common practice to perform supervised learning
with missing data is to simply impute the data set first, and then train any
predictor on the completed/imputed data set. The imputation technique
can be simple (e.g., using mean imputation) or more elaborate (Van Buuren
and Groothuis-Oudshoorn, 2011; Yoon et al., 2018; Muzellec et al., 2020;
Ipsen et al., 2022). While such widely-used two-step strategies lack deep
theoretical foundations, they have been shown to be consistent, provided
that the approximation capacity of the chosen predictor is large enough (see
Josse et al., 2019; Le Morvan et al., 2021). When considering low-capacity
predictors, such as linear models, other theoretically sound strategies consist
of decomposing the prediction task with respect to all possible missing
patterns (see Le Morvan et al., 2020b; Ayme et al., 2022) or by automatically
detecting relevant patterns to predict, thus breaking the combinatorics of
such pattern-by-pattern predictors (see the specific NeuMiss architecture in
Le Morvan et al., 2020a). Proved to be nearly optimal (Ayme et al., 2022),
such approaches are likely to be robust to very pessimistic missing data
scenarios. Inherently, they do not scale with high-dimensional data sets, as
the variety of missing patterns explodes. Another direction is advocated in
(Agarwal et al., 2019) relying on principal component regression (PCR) in
order to train linear models with missing inputs. However, out-of-sample
prediction in such a case requires to retrain the predictor on the training
and test sets (to perform a global PC analysis), which strongly departs from
classical ML algorithms massively used in practice.

In this paper, we focus on the high-dimensional regime of linear predictors,
which will appear to be more favorable to handling missing values via simple
and cheap imputation methods, in particular in the missing completely at
random (MCAR) case.

High-dimensional linear models In supervised learning with complete
inputs, when training a parametric method (such as a linear model) in a
high-dimensional framework, one often resorts to an ℓ2 or ridge regularization
technique. On the one hand, such regularization fastens the optimization
procedure (via its convergence rate) (Dieuleveut et al., 2017); on the other
hand, it also improves the generalization capabilities of the trained predictor
(Caponnetto and De Vito, 2007; Hsu et al., 2012). In general, this second
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point holds for explicit ℓ2-regularization, but some works also emphasize the
ability of optimization algorithms to induce an implicit regularization, e.g.,
via early stopping (Yao et al., 2007) and more recently via gradient strategies
in interpolation regimes (Bartlett et al., 2020; Chizat and Bach, 2020; Pesme
et al., 2021).

Contributions For supervised learning purposes, we consider a zero-impu-
tation strategy consisting in replacing input missing entries by zero, and
we formalize the induced bias on a regression task (Section 2). When the
missing values are said Missing Completely At Random (MCAR), we prove
that zero imputation, used prior to training a linear model, introduces an
implicit regularization closely related to that of ridge regression (Section 3).
This bias is exemplified to be negligible in settings commonly encountered in
high-dimensional regimes, e.g., when the inputs admit a low-rank covariance
matrix. We then advocate for the choice of an averaged stochastic gradient
algorithm (SGD) applied on zero-imputed data (Section 4). Indeed, such a
predictor, being computationally efficient, remains particularly relevant for
high-dimensional learning. For such a strategy, we establish a generalization
bound valid for all d, n, in which the impact of imputation on MCAR data is
soothed when d ≫

√
n. These theoretical results legitimate the widespread

imputation approach, adopted by most practitioners, and are corroborated
by numerical experiments in Section 5. All proofs are to be found in the
Appendix.

2 Background and motivation

2.1 General setting and notations

In the context of supervised learning, consider n ∈ N input/output obser-
vations ((Xi, Yi))i∈[n], i.i.d. copies of a generic pair (X,Y ) ∈ Rd × R. By
some abuse of notation, we always use Xi with i ∈ [n] to denote the i-th
observation living in Rd, and Xj (or Xk) with j ∈ [d] (or k ∈ [d]) to denote
the j-th (or k-th) coordinate of the generic input X (see Section A for
notations).

Missing values In real data sets, the input covariates (Xi)i∈[n] are often
only partially observed. To code for this missing information, we introduce
the random vector P ∈ {0, 1}d, referred to as mask or missing pattern, and
such that Pj = 0 if the j-th coordinate of X, Xj , is missing and Pj = 1
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otherwise. The random vectors P1, . . . , Pn are assumed to be i.i.d. copies of a
generic random variable P ∈ {0, 1}d and the missing patterns of X1, . . . , Xn.
Note that we assume that the output is always observed and only entries
of the input vectors can be missing. Missing data are usually classified into
3 types, initially introduced by (Rubin, 1976). In this paper, we focus on
the MCAR assumption where missing patterns and (underlying) inputs are
independent.

Assumption 1 (Missing Completely At Random - MCAR). The pair (X,Y )
and the missing pattern P associated to X are independent.

For j ∈ [d], we define ρj := P(Pj = 1), i.e., 1 − ρj is the expected
proportion of missing values on the j-th feature. A particular case of MCAR
data requires, not only the independence of the mask and the data, but also
the independence between all mask components, as follows.

Assumption 1’ (Ho-MCAR: MCAR pattern with independent homogeneous
components). The pair (X,Y ) and the missing pattern P associated to X are
independent, and the distribution of P satisfies P ∼ B(ρ)⊗d for 0 < ρ ≤ 1,
with 1− ρ the expected proportion of missing values, and B the Bernoulli
distribution.

Naive imputation of covariates A common way to handle missing values
for any learning task is to first impute missing data, to obtain a complete
dataset, to which standard ML algorithms can then be applied. In particular,
constant imputation (using the empirical mean or an oracle constant provided
by experts) is very common among practitioners. In this paper, we consider,
even for noncentered distributions, the naive imputation by zero, so that the
imputed-by-0 observation (Ximp)i, for i ∈ [n], is given by

(Ximp)i = Pi ⊙Xi. (1)

Risk Let f : Rd → R be a measurable prediction function, based on a
complete d-dimensional input. Its predictive performance can be measured
through its quadratic risk,

R(f) := E
[
(Y − f (X))2

]
. (2)

Accordingly, we let f⋆(X) = E[Y |X] be the Bayes predictor for the complete
case and R⋆ the associated risk.
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In the presence of missing data, one can still use the predictor function f ,
applied to the imputed-by-0 input Ximp, resulting in the prediction f(Ximp).
In such a setting, the risk of f , acting on the imputed data, is defined by

Rimp(f) := E
[
(Y − f(Ximp))

2
]
. (3)

For the class F of linear prediction functions from Rd to R, we respectively
define

R⋆(F) = inf
f∈F

R(f), (4)

and
R⋆

imp(F) = inf
f∈F

Rimp(f), (5)

as the infimum over the class F with respectively complete and imputed-by-0
input data.

For any linear prediction function defined by fθ(x) = θ⊤x for any x ∈ Rd

and a fixed θ ∈ Rd, as fθ is completely determined by the parameter θ, we
make the abuse of notation of R(θ) to designate R(fθ) (and Rimp(θ) for
Rimp(fθ)). We also let θ⋆ ∈ Rd (resp. θ⋆imp) be a parameter achieving the
best risk on the class of linear functions, i.e., such that R⋆(F) = R(θ⋆) (resp.
R⋆

imp(F) = Rimp(θ
⋆
imp)).

Imputation bias Even if the prepocessing step consisting of imputing the
missing data by 0 is often used in practice, this imputation technique can
introduce a bias in the prediction. We formalize this imputation bias as

Bimp(F) := R⋆
imp(F)−R⋆(F). (6)

This quantity represents the difference in predictive performance between
the best predictor on complete data and that on imputed-by-0 inputs. In
particular, if this quantity is small, the risk of the best predictor on imputed
data is close to that of the best predictor when all data are available. Note
that, in presence of missing values, one might be interested in the Bayes
predictor

f⋆
mis(Ximp, P ) = E[Y |Ximp, P ]. (7)

and its associated risk R⋆
mis.

Lemma 2.1. Assume that regression model Y = f⋆(X) + ϵ is such that ϵ
and P are independent, then R⋆ ≤ R⋆

mis.
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Intuitively, under the classical assumption ε ⊥⊥ P (see Josse et al., 2019),
which is a verified under Assumption 1, missing data ineluctably deteriorates
the original prediction problem. As a direct consequence, for a well-specified
linear model on the complete case f⋆ ∈ F ,

Rimp(F)−R⋆
mis ≤ Bimp(F). (8)

Consequently, in this paper, we focus our analysis on the bias (and excess risk)
associated to impute-then-regress strategies with respect to the complete-
case problem (right-hand side term of (8)) thus controlling the excess risk of
imputation with respect to the missing data scenario (left-hand side term of
(8)).

In a nutshell, the quantity Bimp(F) thus represents how missing values,
handled with zero imputation, increase the difficulty of the learning problem.
This effect can be tempered in a high-dimensional regime, as rigorously
studied in Section 3. To give some intuition, let us now study the following
toy example.

Example 2.2. Assume an extremely redundant setting in which all covariates
are equal, that is, for all j ∈ [d], Xj = X1 with E

[
X2

1

]
= 1. Also assume

that the output is such that Y = X1 and that Assumption 1’ holds with
ρ = 1/2. In this scenario, due to the input redundancy, all θ satisfying∑d

j=1 θj = 1 minimize θ 7→ R(θ). Letting, for example, θ1 = (1, 0, ..., 0)⊤, we
have R⋆ = R(θ1) = 0 but

Rimp(θ1) = E
[
(X1 − P1X1)

2
]
=

1

2
.

This choice of θ1 introduces an irreducible discrepancy between the risk
computed on the imputed data and the Bayes risk R⋆ = 0. Another choice
of parameter could actually help to close this gap. Indeed, by exploiting the
redundancy in covariates, the parameter θ2 = (2/d, 2/d, ..., 2/d)⊤ (which is
not a minimizer of the initial risk anymore) gives

Rimp(θ2) = E
[(

X1 −
2

d

d∑
j=1

PjXj

)2
]
=

1

d
,

so that the imputation bias Bimp(F) is bounded by 1/d, tending to zero as
the dimension increases. Two other important observations on this example
follow. First, this bound is still valid if EX1 ̸= 0, thus the imputation
by 0 is still relevant even for non-centered data. Second, we remark that
∥θ2∥22 = 4/d, thus good candidates to predict with imputation seem to be of
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small norm in high dimension. This will be proved for more general settings,
in Section 4.

The purpose of this paper is to generalize the phenomenon described in
Example 2.2 to less stringent settings. In light of this example, we focus
our analysis on scenarios for which some information is shared across input
variables: for linear models, correlation plays such a role.

Covariance matrix For a generic complete input X ∈ Rd, call Σ :=
E
[
XX⊤] the associated covariance matrix, admitting the following singular

value decomposition

Σ =
d∑

j=1

λjvjv
⊤
j , (9)

where λj (resp. vj) are singular values (resp. singular vectors) of Σ and such
that λ1 ≥ ... ≥ λd. The associated pseudo-norm is given by, for all θ ∈ Rd,

∥θ∥2Σ := θ⊤Σθ =
d∑

j=1

λj(v
⊤
j θ)

2.

For the best linear prediction, Y = X⊤θ⋆+ϵ, and the noise satisfies E[ϵX] = 0
(first order condition). Denoting E[ϵ2] = σ2, we have

EY 2 = ∥θ⋆∥2Σ + σ2 =

d∑
j=1

λj(v
⊤
j θ

⋆)2 + σ2. (10)

The quantity λj(v
⊤
j θ

⋆)2 can be therefore interpreted as the part of the
variance explained by the singular direction vj .

Remark 2.3. Note that, in the setting of Example 2.2, Σ has a unique positive
singular values λ1 = d, that is to say, all of the variance is concentrated
on the first singular direction. Actually, our analysis will stress out that a
proper decay of singular values leads to low imputation biases.

Furthermore, for the rest of our analysis, we need the following assump-
tions on the second-order moments of X.

Assumption 2. ∃L < ∞ such that, ∀j ∈ [d], E[X2
j ] ≤ L2.

Assumption 3. ∃ℓ > 0 such that, ∀j ∈ [d], E[X2
j ] ≥ ℓ2.

For example, Assumption 2 and 3 hold with L2 = ℓ2 = 1 with normalized
data.
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3 Imputation bias for linear models

3.1 Implicit regularization of imputation

Ridge regression, widely used in high-dimensional settings, and notably for
its computational purposes, amounts to form an ℓ2-penalized version of the
least square estimator:

θ̂λ ∈ argmin
θ∈Rd

{
1

n

n∑
i=1

(Yi − fθ(Xi))
2 + λ ∥θ∥22

}
,

where λ > 0 is the penalization parameter. The associated generalization
risk can be written as

Rλ(θ) := R(θ) + λ ∥θ∥22 .

Proposition 3.1 establishes a link between imputation and ridge penalization.

Proposition 3.1. Under Assumption 1, let V be the covariance matrix of P
(Vij = Cov(Pi, Pj)) and H = diag(ρ1, . . . , ρd), with ρj = P(Pj = 1). Then,
for all θ,

Rimp(θ) = R (Hθ) + ∥θ∥2V⊙Σ .

In particular, under Assumptions 1’, 2 and 3 when L2 = ℓ2,

Rimp(θ) = R (ρθ) + L2ρ(1− ρ) ∥θ∥22 . (11)

This result highlights the implicit ℓ2-regularization at work: performing
standard regression on zero-imputed ho-MCAR data can be seen as perform-
ing a ridge regression on complete data, whose strength λ depends on the
missing values proportion. More precisely, using Equation (11), the optimal
predictor θ⋆imp working with imputed samples verifies

θ⋆imp =
1

L2ρ
argmin
θ∈Rd

{
R (θ) + λimp ∥θ∥22

}
,

with λimp := L2
(
1−ρ
ρ

)
. We exploit this correspondence in Section 3.2 and

3.3 to control the imputation bias.

3.2 Imputation bias for linear models with ho-MCAR missing
inputs

When the inputs admit ho-MCAR missing patterns (Assumption 1’), the
zero-imputation bias Bimp(F) induced in the linear model is controlled by
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a particular instance of the ridge regression bias (see, e.g., Hsu et al., 2012;
Dieuleveut et al., 2017; Mourtada, 2019), defined in general by

Bridge,λ(F) := inf
θ∈Rd

{Rλ(θ)−R⋆(F)} (12)

= λ ∥θ⋆∥2Σ(Σ+λI)−1 . (13)

Theorem 3.2. Under Assumption 1’, 2, and 3, one has

Bridge,λ′
imp

(F) ≤ Bimp(F) ≤ Bridge,λimp
(F),

with λ′
imp := ℓ2

(
1−ρ
ρ

)
and λimp = L2

(
1−ρ
ρ

)
.

As could be expected from Proposition 3.1, the zero-imputation bias is
lower and upper-bounded by the ridge bias, with a penalization constant
depending on the fraction of missing values. In the specific case where
ℓ2 = L2 (same second-order moment), the imputation bias exactly equals a
ridge bias with a constant L2(1− ρ)/ρ. Besides, in the extreme case where
there is no missing data (ρ = 1) then λimp = 0, and the bias vanishes. On
the contrary, if there is a large percentage of missing values (ρ → 0) then
λ′
imp → +∞ and the imputation bias amounts to the excess risk of the naive

predictor, i.e., Bimp(F) = R(0Rd)−R⋆(F). For the intermediate case where
half of the data is likely to be missing (ρ = 1/2), we obtain λimp = L2.

Thus, in terms of statistical guarantees, performing linear regression on
imputed inputs suffers from a bias comparable to that of a ridge penalization,
but with a fixed hyperparameter λimp. Note that, when performing standard
ridge regression in a high-dimensional setting, the best theoretical choice of
the penalization parameter usually scales as d/n (see Sridharan et al., 2008;
Hsu et al., 2012; Mourtada and Rosasco, 2022, for details). If ρ ≳ L2 n

d+n

(which is equivalent to λimp ≲ d
n), the imputation bias remains smaller

than that of the ridge regression with the optimal hyperparameter λ = d/n
(which is commonly accepted in applications). In this context, performing
zero-imputation prior to applying a ridge regression allows handling easily
missing data without drastically increasing the overall bias.

In turns out that the bias of the ridge regression in random designs, and
thus the imputation bias, can be controlled, under classical assumptions
about low-rank covariance structures (Caponnetto and De Vito, 2007; Hsu
et al., 2012; Dieuleveut et al., 2017). In all following examples, we consider
that Tr(Σ) = d, which holds in particular for normalized data.

Example 3.3 (Low-rank covariance matrix with equal singular values). Con-
sider a covariance matrix with a low rank r ≪ d and constant eigenvalues
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(λ1 = · · · = λr =
d
r ). Then Σ(Σ + λimpI)

−1 ⪯ λ−1
r Σ = r

dΣ and Theorem 3.2
leads to

Bimp(F) ≤ λimp
r

d
∥θ⋆∥2Σ .

Hence, the imputation bias is small when r ≪ d (low-rank setting). Indeed,
for a fixed dimension, when the covariance is low-rank, there is a lot of redun-
dancy across variables, which helps counterbalancing missing information in
the input variables, thereby reducing the prediction bias.

Note that Example 3.3 (r ≪ d) is a generalization of Example 2.2 (in
which r = 1), and is rotation-invariant contrary to the latter.

Remark 3.4. A first order condition (see equation (29)) implies that ∥θ⋆∥2Σ +
σ2 = EY 2 = R (0Rd), which is independent of the dimension d. Thus, in all
our upper bounds, ∥θ⋆∥2Σ can be replaced by EY 2, which is dimension-free.
Consequently, we can interpret Example 3.3 (and the following examples)
upper bound as follows: if r ≪ d, then the risk of the naive predictor
is divided by d/r ≫ 1. As a consequence, Bimp tends to zero when the
dimension increases and the rank is fixed.

Example 3.5 (Low-rank covariance matrix compatible with θ⋆ ). Consider a
covariance matrix with a low rank r ≪ d and assume that ⟨θ⋆, v1⟩2 ≥ · · · ≥
⟨θ⋆, vd⟩2 (meaning that θ⋆ is well represented with the first eigendirections
of Σ), Theorem 3.2 leads to

Bimp(F) ≲ λimp
r(log(r) + 1)

d
∥θ⋆∥2Σ .

This result is similar to Example 3.3 (up to a log factor), except that
assumptions on the eigenvalues of Σ have been replaced by a condition on
the compatibility between the covariance structure and θ⋆. If θ⋆ is well
explained by the largest eigenvalues then the imputation bias remains low.
This underlines that imputation bias does not only depend on the spectral
structure of Σ but also on θ⋆.

Example 3.6 (Spiked model, Johnstone (2001)). In this model, the covariance
matrix can be decomposed as Σ = Σ≤r + Σ>r where Σ≤r corresponds to
the low-rank part of the data with large eigenvalues and Σ>r to the residual
high-dimensional data. Suppose that Σ>r ⪯ ηI (small operator norm) and
that all non-zero eigenvalues of Σ≤r are equal, then Theorem 3.2 gives

Bimp(F) ≤ λimp

1− η

r

d
∥θ⋆∥2Σ + η ∥θ⋆>r∥

2
2 ,

where θ⋆>r is the projection of θ⋆ on the range of Σ>r. Contrary to Exam-
ple 3.3, Σ is only approximately low rank, and one can refer to r as the
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“effective rank” of Σ (see Bartlett et al., 2020). The above upper bound
admits a term in O(r/d) (as in Example 3.3), but also suffers from a non-
compressible part η ∥θ⋆>r∥

2
2, due to the presence of residual (potentially noisy)

high-dimensional data. Note that, if θ⋆>r = 0 (only the low-dimensional part
of the data is informative) then we retrieve the same rate as in Example 3.3.

3.3 Imputation bias for linear models and general MCAR
settings

Theorem 3.2 holds only for Ho-MCAR settings, which excludes the case
of dependence between mask components. To cover the case of dependent
variables P1, . . . , Pd under Assumption 1, recall ρj := P(Pj = 1) the proba-
bility that the component j is not missing, and define the matrix C ∈ Rd×d

associated to P , given by:

Ckj :=
Vk,j

ρkρj
, (k, j) ∈ [d]× [d]. (14)

Furthermore, under Assumption 2, define

Λimp := L2λmax(C). (15)

The following result establishes an upper bound on the imputation bias for
general MCAR settings.

Proposition 3.7. Under Assumption 1 and 2, we have

Bimp(F) ≤ Bridge,Λimp
(F).

The bound on the bias is similar to the one of Theorem 3.2 but appeals to
λ = Λimp which takes into account the correlations between the components of
missing patterns. Remark that, under Assumption 1’, there are no correlation
and Λimp = L2 1−ρ

ρ , thus matching the result in Theorem 3.2. The following
examples highlight generic scenarios in which an explicit control on Λimp is
obtained.

Example 3.8 (Limited number of correlations). If each missing pattern com-
ponent is correlated with at most k − 1 other components then Λimp ≤
L2kmaxj∈[d]

{
1−ρj
ρj

}
.

Example 3.9 (Sampling without replacement). Missing pattern components
are sampled as k components without replacement in [d], then Λimp = L2 k+1

d−k .

In particular, if one half of data is missing (k = d
2) then Λimp ≤ 3L2.
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In conclusion, we proved that the imputation bias is controlled by the
ridge bias, with a penalization constant Λimp, under any MCAR settings.
More precisely, all examples of the previous section (Examples 3.3, 3.5
and 3.6), relying on a specific structure of the covariance matrix Σ and
the best predictor θ⋆, are still valid, replacing λimp by Λimp. Additionally,
specifying the missing data generation (as in Examples 3.8 and 3.9) allows
us to control the imputation bias, which is then proved to be small in high
dimension, for all the above examples.

4 SGD on zero-imputed data

Since the imputation bias is only a part of the story, we need to propose
a proper estimation strategy for θ⋆imp. To this aim, we choose to train a
linear predictor on imputed samples, using an averaged stochastic gradient
algorithm (Polyak and Juditsky, 1992), described below. We then establish
generalization bounds on the excess risk of this estimation strategy.

4.1 Algorithm

Given an initialization θ0 ∈ Rd and a constant learning rate γ > 0, the
iterates of the averaged SGD algorithm are given at iteration t by

θimp,t =
[
I − γXimp,tX

⊤
imp,t

]
θimp,t−1 + γYtXimp,t, (16)

so that after one pass over the data (early stopping), the final estimator
θ̄imp,n is given by the Polyak-Ruppert average θ̄imp,n = 1

n+1

∑n
t=1 θimp,t. Such

recursive procedures are suitable for high-dimensional settings, and indicated
for model miss-specification (induced here by missing entries), as studied in
Bach and Moulines (2013). Besides, they are very competitive for large-scale
datasets, since one pass over the data requires O(dn) operations.

4.2 Generalization bound

Our aim is to derive a generalization bound on the predictive performance of
the above algorithm, trained on zero-imputed data. To do this, we require
the following extra assumptions on the complete data.

Assumption 4. There exist σ > 0 and κ > 0 such that E[XX⊤ ∥X∥22] ⪯
κTr(Σ)Σ and E[ϵ2 ∥X∥22] ≤ σ2κTr(Σ), where ϵ = Y −X⊤θ⋆.
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Assumption 4 is a classical fourth-moment assumption in stochastic
optimization (see Bach and Moulines, 2013; Dieuleveut et al., 2017, for
details). Indeed, the first statement in Assumption 4 holds, for example, if X
is a Gaussian vector (with κ = 3) or when X satisfies ∥X∥2 ≤ κTr(Σ) almost
surely. The second statement in Assumption 4 holds, for example, if the model
is well specified or when the noise ε is almost surely bounded. Note that if
the first part holds then the second part holds with σ2 ≤ 2E[Y 2] + 2E[Y 4]1/2.

Our main result, establishing an upper bound on the risk of SGD applied
to zero-imputed data, follows.

Theorem 4.1. Under Assumption 4, choosing a constant learning rate
γ = 1

κTr(Σ)
√
n
leads to

E
[
Rimp

(
θ̄imp,n

)]
−R⋆(F)

≲
κTr(Σ)√

n

∥∥θ⋆imp − θ0
∥∥2
2
+

σ2 + ∥θ⋆∥2Σ√
n

+Bimp(F),

where θ⋆ (resp. θ⋆imp) is the best linear predictor for complete (resp. with
imputed missing values) case.

Theorem 4.1 gives an upper bound on the difference between the averaged
risk E[Rimp

(
θ̄imp,n

)
] of the estimated linear predictor with imputed missing

values (in both train and test samples) and R⋆(F), the risk of the best linear
predictor on the complete case. Interestingly, by Lemma 2.1 and under a well-
specified linear model, the latter also holds for E

[
Rimp

(
θ̄imp,n

)]
−R⋆

mis. The
generalization bound in Theorem 4.1 takes into account the statistical error
of the method as well as the optimization error. More precisely, the upper
bound can be decomposed into (i) a bias associated to the initial condition,
(ii) a variance term of the considered method, and (iii) the aforementioned
imputation bias.

The variance term (ii) depends on the second moment of Y (as ∥θ⋆∥2Σ ≤
EY 2) and decreases with a slow rate 1/

√
n. As seen in Section 3, the impu-

tation bias is upper-bounded by the ridge bias with penalization parameter
λimp, which is controlled in high dimension for low-rank data (see examples
in Section 3.2).

The bias (i) due to the initial condition is the most critical. Indeed,
Tr(Σ) = E[∥X∥22] is likely to increase with d, e.g., under Assumption 2,
Tr(Σ) ≤ dL2. Besides, the starting point θ0 may be far from θ⋆imp. Fortu-
nately, Lemma 4.2 establishes some properties of θ⋆imp.

13



Lemma 4.2. Under Assumptions 1 and 3, let V be the covariance matrix
of P defined in Proposition 3.1. If V is invertible, then∥∥θ⋆imp

∥∥2
2
≤ Bimp(F)

ℓ2λmin(V )
. (17)

In particular, under Assumption 1’,∥∥θ⋆imp

∥∥2
2
≤ Bimp(F)

ℓ2ρ(1− ρ)
. (18)

Lemma 4.2 controls the norm of the optimal predictor θ⋆imp by the im-
putation bias: if the imputation bias is small, then the optimal predictor
on zero-imputed data is of low norm. According to Section 3, this holds in
particular for high-dimensional settings. Thus, choosing θ0 = 0 permits us to
exploit the upper bound provided by Lemma 4.2 in Theorem 4.1. With such
an initialization, the bias due to this initial condition is upper bounded by
κTr(Σ)√

n
∥θ⋆imp∥22. Intuitively, as θ⋆imp is in an ℓ2-ball of small radius, choosing

θ0 within that ball, e.g. θ0 = 0 is a good choice.
Taking into account Lemma 4.2, Proposition 4.3 establishes our final

upper bound on SGD on zero-imputed data.

Proposition 4.3. Under Assumptions 1’, 2, 3 and 4, the predictor θ̄imp,n

resulting from the SGD strategy, defined in Section 4.1, with starting point
θ0 = 0 and learning rate γ = 1

dκL2
√
n
, satisfies

E
[
Rimp

(
θ̄imp,n

)]
−R⋆(F)

≲

(
L2

ℓ2
κd

ρ(1− ρ)
√
n
+ 1

)
Bimp(F) +

σ2 + ∥θ⋆∥2Σ√
n

.

In this upper bound, the first term encapsulates the imputation bias and
the one due to the initial condition, whilst the second one corresponds to

the variance of the training procedure. As soon as d ≫ ℓ2

L2
ρ(1−ρ)

√
n

κ then the
imputation bias is negligible compared to that of the initial condition.

4.3 Examples

According to Examples 3.3 and 3.6, Bimp(F) decreases with the dimension,
provided that Σ or β are structured. Strikingly, Corollary 4.4 highlights
cases where the upper bound of Proposition 4.3 is actually dimension-free.

Corollary 4.4. Suppose that assumptions of Proposition 4.3 hold. Recall
that λ1 ≥ . . . ≥ λd are the eigenvalues of Σ associated with the eigenvectors
v1, . . . , vd.

14



(i) (Example 3.3 - Low-rank Σ). If Σ has a low rank r ≪ d and equal
non-zero singular values, then

E
[
Rimp

(
θ̄imp,n

)]
− R⋆(F) ≲

L2

ℓ2

(
L2

ℓ2
κ

ρ
√
n
+

1− ρ

d

)
r ∥θ⋆∥2Σ

ρ
+

σ2

√
n
.

(ii) (Example 3.6 - Spiked model). If Σ = Σ≤r + Σ>r with Σ>r ⪯ ℓ2ηI,
Σ≤r has a low rank r ≪ d with equal non-zero singular values, and the
projection of θ⋆ on the range of Σ>r satisfies θ⋆>r = 0, then

E
[
Rimp

(
θ̄imp,n

)]
−R⋆(F) ≲

L2

ℓ2

(
L2

ℓ2
κ

ρ
√
n
+

1− ρ

d

)
r ∥θ⋆∥2Σ
ρ(1− η)

+
σ2

√
n
.

Corollary 4.4 establishes upper bounds on the risk of SGD applied on
zero-imputed data, for some particular structures on Σ and θ⋆. These bounds
take into account the statistical error as well as the optimization one, and
are expressed as function of d and n. Since ∥θ⋆∥2Σ is upper bounded by EY 2

(a dimension-free term), the risks in Corollary 4.4 can also be upper bounded

by dimension-free quantities, provided d > ℓ2

L2
ρ(1−ρ)

√
n

κ .

Besides, Corollary 4.4 shows that, for d ≫ ℓ2

L2
ρ(1−ρ)

√
n

κ , the imputation
bias is negligible with respect to the stochastic error of SGD. Therefore, for

structured problems in high-dimensional settings for which d ≫ ℓ2

L2
ρ(1−ρ)

√
n

κ ,
the zero-imputation strategy is consistent, with a slow rate of order 1/

√
n.

Remark 4.5 (Discussion about slow rates). An important limitation of cou-
pling naive imputation with SGD is that fast convergence rates cannot be
reached. Indeed, in large dimensions, the classical fast rate is given by
Tr(Σ(Σ + λI)−1)/n with λ the penalization hyper-parameter. The quantity
Tr(Σ(Σ + λI)−1), often called degrees of freedom, can be negligible w.r.t.
d (for instance when Σ has a fast eigenvalue decay). However, when work-
ing with an imputed dataset, the covariance matrix of the data is not Σ
anymore, but Σimp = EXimpX

⊤
imp. Therefore, in the case of Assumption 1’

(Ho-MCAR), all the eigenvalues of Σimp are larger than ρ(1− ρ) (preventing
the eigenvalues decay obtained when working with complete inputs). By
concavity of the degrees of freedom (on positive semi-definite matrix), we

can show that Tr(Σimp(Σimp + λI)−1) ≥ dρ(1−ρ)
1+λ , hindering traditional fast

rates.

Link with dropout Dropout is a classical regularization technique used
in deep learning, consisting in randomly discarding some neurons at each
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SGD iteration (Srivastava et al., 2014). Regularization properties of dropout
have attracted a lot of attention (e.g., Gal and Ghahramani, 2016). Inter-
estingly, setting a neuron to 0 on the input layer is equivalent to masking
the corresponding feature. Running SGD (as in Section 4) on a stream of
zero-imputed data is thus equivalent to training a neural network with no
hidden layer, a single output neuron, and dropout on the input layer. Our
theoretical analysis describes the implicit regularization impact of dropout
in that very particular case. Interestingly, this can also be applied to the
fine-tuning of the last layer of any regression network structure.

5 Numerical experiments

Data simulation We generate n = 500 complete input data according to
a normal distribution with two different covariance structures. First, in the
low-rank setting (Ex. 3.3 and 3.5), the output is formed as Y = β⊤Z + ϵ,
with β ∈ Rr, Z ∼ N (0, Ir) and ϵ ∼ N (0, 2), and the inputs are given by
X = AZ + µ, with a full rank matrix A ∈ Rd×r and a mean vector µ ∈ Rd.
Note that the dimension d varies in the experiments, while r = 5 is kept
fixed. Besides, the full model can be rewritten as Y = X⊤θ⋆ + ϵ with
θ⋆ = (A†)⊤β where A† is the Moore-Penrose inverse of A. Secondly, in
the spiked model (Ex. 3.6), the input and the output are decomposed as
X = (X1, X2) ∈ Rd/2 × Rd/2 and Y = Y1 + Y2, where (X1, Y1) is generated
according to the low-rank model above and (X2, Y2) is given by a linear
model Y2 = θ⊤2 X2 and X2 ∼ N (0, Id/2), choosing ∥θ2∥ = 0.2.

Two missing data scenarios, with a proportion ρ of observed entries equal
to 50%, are simulated according to (i) the Ho-MCAR setting (Assumption 1’);
and to (ii) the self-masking MNAR setting, which departs significantly from
the MCAR case as the presence of missing data depends on the underlying
value itself. More precisely, set α ∈ Rd such that, for all j ∈ [d], P(Pj =
1|X) = (1 + e−αjXj )−1 and E[Pj ] = 0.5 (50% of missing data on average per
components).

Regressors For two-step strategies, different imputers are combined with
different regressors. The considered imputers are: the zero imputation
method (0-imp) complying with the theoretical analysis developed in this
paper, the optimal imputation by a constant for each input variable (Opti-
imp), obtained by training a linear model on the augmented data (P ⊙X,P )
(see Le Morvan et al., 2020b, Proposition 3.1), and single imputation by
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chained equations (ICE, (Van Buuren and Groothuis-Oudshoorn, 2011))1.
The subsequent regressors, implemented in scikit-learn (Pedregosa et al.,
2011), are either the averaged SGD (SGD, package SGDRegressor) with
θ0 = 0 and γ = (d

√
n)−1 (see Proposition 4.3, or the ridge regressor (with a

leave-one-out cross-validation, package ridge). Two specific methods that
do not resort to prior imputation are also assessed: a pattern-by-pattern
regressor (Le Morvan et al., 2020b; Ayme et al., 2022) (Pat-by-Pat) and a
neural network architecture (NeuMiss) (Le Morvan et al., 2020a) specifically
designed to handle missing data in linear prediction.

Numerical results In Figure 1 (a) and (b), we consider Ho-MCAR pat-
terns with Gaussian inputs with resp. a low-rank and spiked covariance
matrix. The 2-step strategies perform remarkably well, with the ICE imputer
on the top of the podium, highly appropriate to the type of data (MCAR
Gaussian) in play. Nonetheless, the naive imputation by zero remains com-
petitive in terms of predictive performance and is computationally efficient,
with a complexity of O(nd), especially compared to ICE, whose complexity
is of order n2d3. Regarding Figure 1 (b), we note that ridge regression
outperforms SGD for large d. Note that, in the regime where d ≥

√
n, the

imputation bias is negligible w.r.t. to the method bias, the latter being lower
in the case of ridge regression. This highlights the benefit of explicit ridge
regularization (with a tuned hyperparameter) over the implicit regularization
induced by the imputation.

In practice, missing data are not always of the Ho-MCAR type, we
compare therefore the different algorithms on self-masked data. In Figure 1
(c), we note that specific methods remain competitive for larger d compared to
MCAR settings. This was to be expected since those methods were designed
to handle complex missing not at random (MNAR) data. However, they
still suffer from the curse of dimensionality and turns out to be inefficient in
large dimension, compared to all two-step strategies.

6 Discussion and conclusion

In this paper, we study the impact of zero imputation in high-dimensional
linear models. We demystify this widespread technique, by exposing its
implicit regularization mechanism when dealing with MCAR data. We prove
that, in high-dimensional regimes, the induced bias is similar to that of ridge
regression, commonly accepted by practitioners. By providing generalization

1IterativeImputer in scikit-learn (Pedregosa et al., 2011).
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(a) Ho-MCAR (b) Ho-MCAR (c) Self-Masked
+ Low-rank model + Spiked model + Low-rank model

Figure 1: Risk w.r.t. the input dimension (evaluated on 104 test samples)
when 50% of the input data is missing. The y-axis corresponds to Rmis(f)−
R⋆ = E

[
(Y − f(Ximp, P ))2

]
− σ2. The averaged risk is depicted over 10

repetitions within a 95% confidence interval.

bounds on SGD trained on zero-imputed data, we establish that such two-step
procedures are statistically sound, while being computationally appealing.

Theoretical results remain to be established beyond the MCAR case,
to properly analyze and compare the different strategies for dealing with
missing data in MNAR settings (see Figure 1 (c)). Extending our results
to a broader class of functions (escaping linear functions) or even in a
classification framework, would be valuable to fully understand the properties
of imputation.
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A Notations

Notations For two vectors (or matrices) a, b, we denote by a ⊙ b the
Hadamard product (or component-wise product). [n] = {1, 2, ..., n}. For two
symmetric matrices A and B, A ⪯ B means that B − A is positive semi-
definite. The symbol ≲ denotes the inequality up to a universal constant.
Table 1 summarizes the notations used throughout the paper.

Table 1: Notations

P Mask
F Set of linear functions
Bimp Imputation bias
Σ EXX⊤

λj eigenvalues of Σ
vj eigendirections of Σ
ΣP EPP⊤

L2 the largest second moments maxjEX2
j (Assumption 2)

ℓ2 the smallest second moments minjEX2
j (Assumption 3)

θ⋆ Best linear predictor on complete data
θ⋆imp Best linear predictor on imputed data

r Rank of Σ
ρj Theoretical proportion of observed entries

for the j-th variable in a MCAR setting
V Covariance matrix associated to the missing patterns
C Covariance matrix V renormalized by (ρj)j defined in (14)
κ Kurtosis of the input X

B Proof of the main results

B.1 Proof of Lemma 2.1

The proof is based on the definition of the conditional expectation, and given
that

R⋆ = E
[
(Y − E [Y |X])2

]
.
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Note that E [Y |X,P ] = E [f⋆(X) + ϵ|X,P ] = E [f⋆(X)|X,P ] = f⋆(X) (by
independence of ϵ and P ). Therefore,

R⋆ = E
[
(Y − f⋆(X))2

]
≤ E

[
(Y − E [Y |X,P ])2

]
≤ E

[
(Y − E [Y |Ximp, P ])2

]
≤ R⋆

mis,

using that E [Y |Ximp, P ] is a measurable function of (X,P ).

B.2 Preliminary lemmas

Notation Let Xa be a random variable of law La (a modified version of
the law of the underlying input X) on Rd, and for f ∈ F define

Ra(f) = E
[
(Y − f(Xa))

2
]
,

the associate risk. The Bayes risk is given by

R⋆
a(F) = inf

f∈F
E
[
(Y − f(Xa))

2
]
,

if the infimum is reached, we denote by f⋆
a ∈ argminf∈F Ra(f). The discrep-

ancy between both risks, involving either the modified input Xa or the initial
input X, can be measured through the following bias:

Ba = R⋆
a(F)−R⋆(F).

General decomposition The idea of the next lemma is to compare Ra(f)
with the true risk R(f).

Lemma B.1. If (Xa ⊥⊥ Y )|X, then, for all θ ∈ Rd,

Ra (fθ) = R (gθ) + ∥θ∥2Γ ,

where gθ(X) = θ⊤E [Xa|X] and Γ = E
[
(Xa − E [Xa|X])(Xa − E [Xa|X])⊤

]
the integrated conditional covariance matrix. In consequence, if there exists
an invertible linear application H such that, E [Xa|X] = H−1X, then

• For all θ ∈ Rd, gθ is a linear function and

R⋆
a(F) = inf

θ∈Rd

{
R (fθ) + ∥θ∥2H⊤ΓH

}
. (19)
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• If λmax(HΓH⊤) ≤ Λ, then

Ba(F) ≤ inf
θ∈Rd

{
R(fθ) + Λ ∥θ∥22

}
= Bridge,Λ. (20)

• If λmin(Γ) ≥ µ > 0, then

∥θ⋆a∥
2
2 ≤

Ba(F)

µ
. (21)

Remark B.2. Equation (21) is crucial because a bound on the bias Ba(F)
actually gives a bound for ∥θ⋆a∥

2
2 too. This will be of particular interest for

Theorem 4.1.

Proof.

Ra (fθ) = E
[(

Y − θ⊤Xa

)2
]

= E
[
E
[(

Y − E
[
θ⊤Xa|X

]
+ E

[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
= E

[(
Y − E

[
θ⊤Xa|X

])2
]
+ E

[
E
[(

E
[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
= E

[
(Y − gθ(X))2

]
+ E

[
E
[(

E
[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
= R(gθ) + E

[
E
[(

E
[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
.

since E
[
E
[
θ⊤Xa|X

]
− θ⊤Xa|X

]
= 0. Furthermore,

E
[
E
[(

E
[
θ⊤Xa|Z

]
− θ⊤Xa

)2
|X

]]
= θ⊤E

[
(E [Xa|X]−Xa) (E [Xa|X]−Xa)

⊤
]
θ

= E
[
θ⊤E

[
(E [Xa|X]−Xa) (E [Xa|X]−Xa)

⊤ |X
]
θ
]

= E
[
∥θ∥2E[(E[Xa|X]−Xa)(E[Xa|X]−Xa)

⊤|X]

]
= E

[
∥θ∥2Γ

]
.

Finally,

Ra (fθ) = R(gθ) + ∥θ∥2Γ.
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Assume that an invertible matrix H exists such that gθ(X) = θ⊤H−1X,
thus gθ is a linear function. Equation (19) is then obtained by using a
change of variable: θ′ = (H−1)⊤θ = (H⊤)−1θ and θ = H⊤θ′. Thus, we have
gθ′(X) = θ⊤X = fθ(X) and

Ra (fθ′) = R(fθ) + ∥H⊤θ′∥2Γ
= R(fθ) + ∥θ′∥2HΓH⊤ .

Then using HΓH⊤ ⪯ ΛI proves (20). Note that, without resorting to
the previous change of variable, the bias can be written as

Ba(F) = R
(
gθ⋆a

)
−R (fθ⋆) + ∥θ⋆a∥

2
Γ . (22)

By linearity of gθ⋆a , R
(
gθ⋆a

)
≥ R (fθ⋆) = R⋆(F) (because gθ⋆a ∈ F).

Thus, ∥θ⋆a∥
2
Γ ≤ Ba(F). Assuming µI ⪯ Γ gives (21), as

µ ∥θ⋆a∥
2 ≤ ∥θ⋆a∥

2
Γ ≤ Ba(F).

B.3 Proof of Section 3

We consider the case of imputed-by-0 data, i.e.,

Ximp = P ⊙X.

Under the MCAR setting (Assumption 1),

E [Ximp|X] = H−1X,

with H = diag(ρ−1
1 , ..., ρ−1

d ) (variables always missing are discarded) and
(ρj)j∈[d] the observation rates associated to each input variable.

Proof of Proposition 3.1. For i, j ∈ [d],

Γij = E
[(
(Ximp)i − E

[
(Ximp)i |X

]) (
(Ximp)j − E

[
(Ximp)j |X

])]
= E [XiXj(Pi − EPi)(Pj − EPj)]

= E [XiXj ] Cov(Pi, Pj),

= ΣijVij (23)

since P and X are independent and with V defined in Proposition 3.1.
Therefore, applying Lemma B.1 with Γ = Σ ⊙ V proves the first part of
Proposition 3.1. Regarding the second part, under the Ho-MCAR assumption,
one has V = ρ(1− ρ)I, thus Γ = ρ(1− ρ)diag(Σ). Furthermore, if L2 = ℓ2,
then diag(Σ) = L2I which gives Γ = L2ρ(1− ρ)I.

25



Proof of Theorem 3.2 and Proposition 3.7. Under Assumption 1, since H is
a diagonal matrix,

H⊤ΓH = Σ⊙ C,

where C is defined in Equation (14).

• Under Assumption 1’, the matrix C satisfies C = 1−ρ
ρ I. Moreover,

under Assumption 2 (resp. Assumption 3), one has Σ⊙C ⪯ 1−ρ
ρ L2I =

λimp (resp. Σ⊙ C ⪰ 1−ρ
ρ ℓ2I = λ′

imp) using (19), we obtain

inf
θ∈Rd

{
R (θ) + λ′

imp ∥θ∥
2
2

}
≤ R⋆

imp ≤ inf
θ∈Rd

{
R (θ) + λimp ∥θ∥22

}
.

Subtracting R⋆(F), one has

Bridge,λ′
imp

≤ Bimp ≤ Bridge,λimp
,

which concludes the proof of Theorem 3.2.

• Under Assumption 1, we have HΓH⊤ = Σ⊙C. Using Lemma E.2, we
obtain for all θ,

∥θ∥2HΓH⊤ = ∥θ∥2Σ⊙C ≤ λmax(C) ∥θ∥2diag(Σ) .

Under Assumption 2, we have diag(Σ) ⪯ L2I, thus

∥θ∥2HΓH⊤ ≤ L2λmax(C) ∥θ∥22 .

This shows that λmax(HΓH⊤) ≤ L2λmax(C) = Λimp We conclude on
Proposition 3.7 using Equation (19).

B.4 Proof of Lemma 4.2

Proof. Using (23), we have Γ = V ⊙ Σ. Using that λmin(V )I ⪯ V , by
Lemma E.1, we obtain

λmin(V )I ⊙ Σ ⪯ Γ,

and equivalently λmin(V ) ⊙ diag(Σ) ⪯ Γ. Under Assumption 3, we have
ℓ2I ⪯ diag(Σ), thus

ℓ2λmin(V )I ⪯ Γ.

26



Therefore, λmin(Γ) ≥ ℓ2λmin(V ). Thus, using (21), we obtain the first part
of Lemma 4.2:

ℓ2λmin(V )
∥∥θ⋆imp

∥∥2
2
≤ Bimp(F). (24)

Under Assumption 1’, λmin(V ) = ρ(1− ρ), so that

ℓ2ρ(1− ρ)
∥∥θ⋆imp

∥∥2
2
≤ Bimp(F), (25)

which proves the second part of Lemma 4.2.

C Stochastic gradient descent

C.1 Proof of Theorem 4.1

Lemma C.1. Assume (xn, ξn) ∈ H × H are Fn-measurable for a se-
quence of increasing σ-fields (Fn), n ⩾ 1. Assume that E [ξn | Fn−1] =

0,E
[
∥ξn∥2 | Fn−1

]
is finite and E

[(
∥xn∥2 xn ⊗ xn

)
| Fn−1

]
≼ R2H, with

E [xn ⊗ xn | Fn−1] = H for all n ⩾ 1, for some R > 0 and invertible operator
H. Consider the recursion αn = (I − γxn ⊗ xn)αn−1 + γξn, with γR2 ⩽ 1.
Then:

(
1− γR2

)
E [⟨ᾱn−1, Hᾱn−1⟩] +

1

2nγ
E ∥αn∥2 ⩽

1

2nγ
∥α0∥2 +

γ

n

n∑
k=1

E ∥ξk∥2 .

Proof. The idea is to use Lemma C.1 with

• xk = Ximp,k, yk = Yk

• H = Σimp = E
[
Ximp,kX

⊤
imp,k

]
= ΣP ⊙ Σ where ΣP = E

[
PP⊤]

• αk = θimp,k − θ⋆imp

• ξk = Ximp,k(Yk −X⊤
imp,kθ

⋆
imp)

• γ = 1
2R2

√
n

• R2 = κTr(Σ)

We can show, with these notations, that recursion (16) leads to recursion
αn = (I − γxn ⊗ xn)αn−1 + γξn with α0 = θ0 − θ⋆imp. Now, let’s check the
assumption of Lemma C.1.
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• Let show that E
[
XimpX

⊤
imp ∥Ximp∥22

]
⪯ R2Σimp. Indeed,

E
[
XimpX

⊤
imp ∥Ximp∥22

]
⪯ E

[
XimpX

⊤
imp ∥X∥22

]
,

using that ∥Ximp∥22 ≤ ∥X∥22, and 0 ≼ XimpX
⊤
imp. Then,

E
[
XimpX

⊤
imp ∥X∥22

]
= EE

[
XimpX

⊤
imp ∥X∥22 |P

]
= EE

[
PP⊤ ⊙XX⊤ ∥X∥22 |P

]
= E

[
ΣP ⊙XX⊤ ∥X∥22

]
= ΣP ⊙

(
E
[
XX⊤ ∥X∥22

])
.

According to Assumption 4, E
[
XX⊤ ∥X∥22

]
⪯ R2Σ, and Lemma E.1

lead to

E
[
XimpX

⊤
imp ∥Ximp∥22

]
⪯ R2ΣP ⊙ Σ = R2Σimp.

• Define ϵimp = Y −X⊤
impθ

⋆
imp = X⊤θ⋆ + ϵ−X⊤

impθ
⋆
imp . First, we have

ϵ2imp ≤ 3

((
X⊤θ⋆

)2
+ ϵ2 +

(
X⊤

impθ
⋆
imp

)2
)
, then

E
[
∥ξ∥22

]
= E

[
ϵ2imp ∥Ximp∥22

]
≤ 3E

[((
X⊤θ⋆

)2
+ ϵ2 +

(
X⊤

impθ
⋆
imp

)2
)
∥Ximp∥22

]
≤ 3

(
E
[(

X⊤θ⋆
)2

∥X∥22
]
+ E

[
ϵ2 ∥X∥22

]
+E

[(
X⊤

impθ
⋆
imp

)2
∥Ximp∥22

])
.

Let remark that, using Assumption 4

E
[(

X⊤θ⋆
)2

∥X∥22
]
= E

[
θ⋆⊤

(
XX⊤ ∥X∥22

)
θ⋆
]
∥θ⋆∥2Σ

≤ R2θ⋆⊤Σθ

= R2 ∥θ⋆∥2Σ .
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Using the first point, by the same way, E
[(

X⊤
impθ

⋆
imp

)2
∥Ximp∥22

]
≤∥∥∥θ⋆imp

∥∥∥2
Σimp

. By Assumption 4, we have also than E
[
ϵ2 ∥X∥22

]
≤ σ2R2.

Thus,

E
[
∥ξ∥22

]
≤ 3R2

(
σ2 + ∥θ⋆∥2Σ +

∥∥θ⋆imp

∥∥2
Σimp

)
≤ 3R2

(
σ2 + 2 ∥θ⋆∥2Σ

)
,

because ∥θ⋆∥2Σ = R (θ⋆) ≤ Rimp

(
θ⋆imp

)
=

∥∥∥θ⋆imp

∥∥∥2
Σimp

.

Consequently we can apply Lemma C.1, to obtain(
1− 1

2
√
n

)
E
[〈
θ̄imp,n − θ⋆imp,Σimp(θ̄imp,n − θ⋆imp)

〉]
+

1

2nγ
E
∥∥θimp,n − θ⋆imp

∥∥2
⩽

1

2nγ

∥∥θ⋆imp − θ0
∥∥2 + γ

n

n∑
k=1

E ∥ξk∥2 .

The choice γ = 1
2R2

√
n
leads to

E
∥∥θ̄imp,n − θ⋆imp

∥∥2
Σimp

⩽
2R2

√
n

∥∥θ⋆imp − θ0
∥∥2 + 4

σ2 + 2 ∥θ⋆∥2Σ√
n

.

We conclude on Theorem 4.1 using that,

E
[
Rimp

(
θ̄imp

)]
−R⋆ = E

[
Rimp

(
θ̄imp

)]
−R⋆

imp +R⋆
imp −R⋆

= E
∥∥θ̄imp,n − θ⋆imp

∥∥2
Σimp

+Bimp.

C.2 Proof of Proposition 4.3 and Corollary 4.4

Proof of Proposition 4.3. First, under Assumption 2, Tr(Σ) ≤ dL2. Then,
initial conditions term with θ0 = 0,

κTr(Σ)√
n

∥∥θ⋆imp

∥∥2
2
≤ κL2d√

nℓ2ρ(1− ρ)
Bimp(F), (26)

using Lemma 4.2. We obtain Proposition 4.3 using inequality above in
Theorem 4.1.
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proof of Corollary 4.4. We obtain the upper bounds considered that: accord-
ing to Theorem 3.2, Bimp ≤ Bridge,λimp

; under Assumption 3, Tr(Σ) ≥ dℓ2.
Then, we put together Proposition 4.3 and ridge bias bound (see Ap-
pendix D).

C.3 Miscellaneous

Proposition C.2. If X statisfies E
[
XX⊤ ∥X∥22

]
⪯ κTr(Σ)Σ, then E

[
ϵ2 ∥X∥22

]
≤

σ2κTr(Σ) with σ2 ≤ 2E[Y 2] + 2E[Y 4]1/2.

Proof.

E
[
ϵ2 ∥X∥22

]
= E

[(
Y −X⊤θ⋆

)2
∥X∥22

]
≤ 2E

[((
X⊤θ⋆

)2
+ Y 2

)
∥X∥22

]
≤ 2E

[
Y 2 ∥X∥22

]
+ 2E

[(
X⊤θ⋆

)2
∥X∥22

]
.

Regarding the first term, by Cauchy Schwarz,

E
[
Y 2 ∥X∥22

]2
≤ E

[
Y 4

]
E
[
∥X∥42

]
≤ E

[
Y 4

]
E
[
Tr

(
XX⊤ ∥X∥22

)]
≤ E

[
Y 4

]
κTr(Σ)2.

As for the second term,

E
[(

X⊤θ⋆
)2

∥X∥22
]
= E

[
(θ⋆)⊤XX⊤ ∥X∥22 θ

⋆
]

≤ κTr(Σ)E
[
(θ⋆)⊤Σθ⋆

]
≤ κTr(Σ) ∥θ⋆∥22 .

E
[
ϵ2 ∥X∥22

]
≤ E

[
Y 4

] 1
2 κTr(Σ) + κTr(Σ) ∥θ⋆∥2Σ ≤ σ2κTr(Σ) ∥θ⋆∥2Σ .
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D Details on examples

Recall that

Bridge,λ(F) = λ ∥θ⋆∥2Σ(Σ+λI)−1 (27)

= λ
d∑

j=1

λj

λj + λ
(v⊤j θ

⋆)2. (28)

D.1 Low-rank covariance matrix (Example 3.3)

Proposition D.1 (Low-rank covariance matrix with equal singular values).
Consider a covariance matrix with a low rank r ≪ d and constant eigenvalues
(λ1 = λ2 = ... = λr). Then,

Bridge,λ(F) = λ
r

Tr(Σ)
∥θ⋆∥2Σ .

Proof. Using that λ1 = · · · = λr and
∑r

j=1 λj = Tr(Σ), we have λ1 = · · · =
λr =

Tr(Σ)
r . Then Σ(Σ + λI)−1 ⪯ λ−1

r Σ = r
Tr(Σ)Σ. Thus,

Bridge,λ(F) = λ ∥θ⋆∥2Σ(Σ+λI)−1 = λ
r

Tr(Σ)
∥θ⋆∥2Σ .

D.2 Low-rank covariance matrix compatible with θ⋆ (Exam-
ple 3.5)

Proposition D.2 (Low-rank covariance matrix compatible with θ⋆). Con-
sider a covariance matrix with a low rank r ≪ d and assume that ⟨θ⋆, v1⟩2 ≥
· · · ≥ ⟨θ⋆, vd⟩2, then

Bridge,λ(F) ≲ λ
r(log(r) + 1)

Tr(Σ)
∥θ⋆∥2Σ .

Proof. Recall that

∥θ⋆∥2Σ =
d∑

j=1

λj(v
⊤
j θ

⋆)2. (29)

Under the assumptions of Example 3.5, using that (λj)j and
(
(v⊤j θ

⋆)2
)
j
are

decreasing, then for all k ∈ [r],

k∑
j=1

λj(v
⊤
k θ

⋆)2 ≤ ∥θ⋆∥2Σ.
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Thus, for all k ∈ [r],

(v⊤k θ
⋆)2 ≤

∥θ⋆∥2Σ∑k
j=1 λj

.

Using that
∑r

j=1 λj = Tr(Σ) and that eigenvalues are decreasing, we have∑k
j=1 λj ≥ k

rTr(Σ) using Lemma E.3. Then

Bridge,λ(F) = λ

r∑
k=1

λk

λk + λ
(v⊤k θ

⋆)2

≤ λ

r∑
k=1

(v⊤k θ
⋆)2

≤ λ∥θ⋆∥2Σ
r∑

k=1

1∑k
j=1 λj

≤ λ
r∑

k=1

r

kTr(Σ)

≤ λ
r

Tr(Σ)

r∑
k=1

1

k

≲ λ
r

Tr(Σ)
(log(r) + 1),

by upper-bounding the Euler-Maclaurin formula.

D.3 Spiked covariance matrix (Example 3.6)

Proposition D.3 (Spiked model). Assume that the covariance matrix is
decomposed as Σ = Σ≤r + Σ>r. Suppose that Σ>r ⪯ ηI (small operator
norm) and that all non-zero eigenvalues of Σ≤r are equal, then

Bridge,λ(F) ≤ r

Tr(Σ)− dη
∥θ⋆∥2Σ + η ∥θ⋆>∥

2
2 .

where θ⋆>r is the projection of θ⋆ on the range of Σ>r.

Proof. One has

Σ(Σ + λI)−1 = Σ≤(Σ + λI)−1 +Σ>(Σ + λI)−1

⪯ Σ≤(Σ≤ + λI)−1 +Σ>(Σ> + λI)−1

⪯ 1

µ
Σ≤ +

1

λ
Σ>
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where µ is the non-zero eigenvalue of Σ≤. Thus,

Bridge,λ(F) = ∥θ⋆∥2λΣ(Σ+λI)−1

≤ ∥θ⋆∥2λ
µ
Σ≤+Σ>

≤ λ

µ
∥θ⋆∥2Σ + ∥θ⋆∥2Σ>

.

Using that λmax(Σ>) ≤ η, we have

Bridge,λ(F) ≤ λ

µ
∥θ⋆∥2Σ + η ∥θ⋆>∥

2
2 .

Using Weyl’s inequality, for all j ∈ [d], λj(Σ≤ + Σ>) ≤ λj(Σ≤) + η.
Summing the previous inequalities, we get

Tr(Σ) ≤ rµ+ dη.

Thus,

µ ≥ Tr(Σ)− dη

r
.

In consequence,

Bridge,λ(F) ≤ r

Tr(Σ)− dη
∥θ⋆∥2Σ + η ∥θ⋆>∥

2
2 .

E Technical lemmas

Lemma E.1. Let A,B, V be three symmetric non-negative matrix, if A ⪯ B
then A⊙ V ⪯ B ⊙ V .

Proof. Let X ∼ N (0, V ) and θ ∈ Rd,
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∥θ∥2A⊙V = θ⊤A⊙ V θ

= θ⊤
((

EXX⊤
)
⊙A

)
θ

= E
[
θ⊤

((
XX⊤

)
⊙A

)
θ
]

= E

∑
i,j

θi

((
XX⊤

)
⊙A

)
ij
θj


= E

∑
i,j

θiXiXjAijθj


= E

∑
i,j

(θiXi) (θjXj)Aij


= E

[
∥X ⊙ θ∥2A

]
≤ E

[
∥X ⊙ θ∥2B

]
= ∥θ∥2B⊙V

Lemma E.2. Let A,B be two non-negative symmetric matrices, then A⊙B
is non-negative symmetric and, for all θ ∈ Rd:

∥θ∥2A⊙B ≤ λmax(B) ∥θ∥2diag(A) ,

where diag(A) is the diagonal matrix containing the diagonal terms of A.

Proof. Let X ∼ N (0, A), thus A = E
[
XX⊤], then for θ ∈ Rd
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∥θ∥2A⊙B = θ⊤A⊙Bθ

= θ⊤
((

EXX⊤
)
⊙B

)
θ

= E
[
θ⊤

((
XX⊤

)
⊙B

)
θ
]

= E

∑
i,j

θi

((
XX⊤

)
⊙B

)
ij
θj


= E

∑
i,j

θiXiXjBijθj


= E

∑
i,j

(θiXi) (θjXj)Bij


= E

[
(X ⊙ θ)⊤B (X ⊙ θ)

]
≥ 0,

using that B is positive. Thus A⊙B is positive. Furthermore,

∥θ∥2A⊙B = E
[
(X ⊙ θ)⊤B (X ⊙ θ)

]
≤ λmax(B)E

[
(X ⊙ θ)⊤ (X ⊙ θ)

]
= λmax(B)E

[∑
i

θ2iX
2
i

]
= λmax(B)

∑
i

θ2iE
[
X2

i

]
= λmax(B)

∑
i

θ2iAii

= λmax(B) ∥θ∥2diag(A) .

Lemma E.3. Let (vj)j∈[d]a non-decreasing sequence of positive number, and

S =
∑d

j=1 vj, for all k ∈ [d],

k∑
j=1

vj ≥
k

d
S.
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Proof. We use a absurd m, if
∑k

j=1 vj <
k
dS. Then, using that (vj)j∈[d]are

non-decreasing,

kvk <
k

d
S.

Thus vk+1 <
1
dS, summing last elements,

d∑
j=r+1

vj <
d− r

d
S.

Then,

S =

k∑
j=1

vj =

r∑
j=1

vj +

d∑
j=r+1

vj <
k

d
S +

d− r

d
S = S.

Thus, this is absurd.
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