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Missing pattern: Mi ∈ {0,1}d

Mi = (1, 0, 0, 1, 0, 0)

Input:      Z = (Xobs, M)
Output:   Y ∈ ℝ
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Missing pattern: Mi ∈ {0,1}d

Mi = (1, 0, 0, 1, 0, 0)

Input:      Z = (Xobs, M)

Goal:  Predict on test sample minimizing 

R( f ) = 𝔼Z,Y [(Y − f(Z))2]

Output:   Y ∈ ℝ



Pattern-by-Pattern regression

f ⋆(Z) = ∑
m∈{0,1}d

f ⋆
m(Xobs(m))1M=m

Bayes predictor decomposition

Local Bayes prediction for the missing pattern (M = m)

Proposition: (Le Morvan et al. 2020) 

Under linear model and several missing data scenarios 

(including MNAR),   are linear  f ⋆

m

yi = β⊤Xi + ϵi

 Assumption: linear model for complete inputs   

/!\ With NA, the Bayes predictor does not necessarily remain linear 
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Theorem 1:

Under Lipschitz and sub-Gaussian assumptions, 


 


            ℰ( ̂f ) := 𝔼 [(f ⋆(Z) − ̂f(Z))
2] ≤ A log(n)2d d

n

Optimal for equiprobable missing patterns 


Tight for the worst case of pattern-by-pattern predictors 

Sub-optimal for other distributions? 

(pm =
1
2d )

yi = β⊤Xi + ϵi

 Assumption: linear model for complete inputs   

/!\ With NA, the Bayes predictor does not necessarily remain linear 



Thresholded Pattern-by-Pattern regression

̂f(Z) = ∑
m∈{0,1}d

̂fm(Xobs(m))1M=m1 ̂pm> d
n

Adaptivity to the missing pattern distribution to overcome the 
curse of dimensionality

Local Least-Square regression on  {(Xi,obs, Yi), Mi = m}

frequency of pattern  ̂pm = m

via Thresholded P-by-P  predictor:

Overfitting reduction 
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Examples: 


1. Uniform distribution:  


2. Bernoulli distribution:        

                                     

ℭp ( d
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n
Mj ∼ ℬ(ϵ) and ϵ ≤

d
n
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The thresholded P-by-P predictor is near-optimal

ℰmini (p) = inf
f̃

sup
ℙ∈𝒫p

𝔼ℙ [(f̃(Z) − f ⋆(Z))2]

Worst case on a class of problem 𝒫p

Best algorithm 

Minimax risk

where  represents a class of data distributions

for which the missing pattern distribution is  

under Lipschitz and Sub-Gaussian assumptions

𝒫p
p
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Theorem 3:

σ2ℭp ( 1

n ) ≲ ℰmini (p) ≤ ℰ( ̂f ) ≤ A log(n)ℭp ( d
n )

Theorem 2

Examples 


1. Uniform distribution:  , 


2. Bernoulli distribution: , 


ℭp ( 1
n ) =

2d

n
ℭp ( d

n ) = 2d d
n

ℭp ( 1
n ) =

d
n
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Lower bound still holds when   includes MAR missing values𝒫p

Minimax risk

where  represents a class of data distributions

for which the missing pattern distribution is  

under Lipschitz and Sub-Gaussian assumptions

𝒫p
p



Conclusion

New thresholded predictor 

Adaptive upper bound  

Near optimal  

̂f(Z) = ∑
m∈{0,1}d

̂fm(Xobs(m))1M=m1 ̂pm> d
n

σ2ℭp ( 1
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Theoretical contributions
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MCAR

Excess risk w.r.t.  with n d = 8

MAR MNAR

Numerical experiments 

Thresholded P-by-P predictor:


reduced variance


consistent regardless of the 
missing scenario   



Near-optimal rate of consistency for 
linear prediction with missing values 
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