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Pattern-by-Pattern regression

o Assumption: linear model for complete inputs

vi=p'X+¢

/\ With NA, the Bayes predictor does not necessarily remain linear

o Bayes predictor decomposition
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Local Bayes prediction for the missing pattern (M = m)

,Pr0position: (Le Morvan et al. 2020)
tUnder linear model and several missing data scenarios §
(including MNAR), £ are linear
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[Theorem 1:
t Under Lipschitz and sub-Gaussian assumptions,

Local Bayes prediction for the missing pattern (M = m)
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{ Proposition: (Le Morvan et al. 2020)
tUnder linear model and several missing data scenarios §
{ including MNAR), f, are linear
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O Optimal for equiprobable missing patterns (pm = ?)
o Tight for the worst case ot pattern-by-pattern predictors
O Sub-optimal for other distributions?




Thresholded Pattern-by-Pattern regression

o Adaptivity to the missing pattern distribution to overcome the
curse of dimensionality

o Overtfitting reduction

via Thresholded P-by-P predictor:

p,, = frequency of pattern m
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Local Least-Square regression on {(Xiaobs, Y),M; = m}
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The thresholded P-by-P predictor is near-optimal

o Minimax risk

Worst case on a class of problem &,

'

Cgmini (p) — H}f SUp Ep [(f(Z) _f*(Z))z]
J Pep,
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Best algorithm

where &, represents a class of data distributions

O for which the missing pattern distribution is p
O under Lipschitz and Sub-Gaussian assumptions



The thresholded P-by-P predictor is near-optimal

o Minimax risk

Worst case on a class of problem &,

'

& v (p) = 1nf sup LEp [(f(z) _f*(Z))z]

/ Pe®, O Lower bound still holds when @p includes MAR missing values
Best algorithm Examples

1. Uniform distribution:
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Conclusion

Theoretical contributions

o New thresholded predictor ) = Z df m(Kops(m) 1=l >
me{0,1}

O Adaptive upper bound

o Near optimal c* < Emini (P) < Alog(n)



Theoretical contributions

O New thresholded predictor
O Adaptative upper bound

O Near optimal

Numerical experiments

O Thresholded P-by-P predictor:
O reduced variance

O consistent regardless of the
MISSINg scenario
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