Near-optimal rate of consistency for linear prediction with missing values

Alexis Ayme Claire Boyer Aymeric Dieuleveut and Erwan Scornet

Test sample

O Missing pattern: $M_i \in \{0,1\}^d$

$$X_{i} = \boxed{NA \ 1 \ -5 \ NA \ 0 \ 2}$$

$$\downarrow$$

$$M_{i} = (1, \ 0, \ 0, \ 1, \ 0, \ 0)$$
O Input:
$$Z = (X_{obs}, M)$$

O Output: $Y \in \mathbb{R}$

O Missing pattern: $M_i \in \{0,1\}^d$

$$X_i = \boxed{NA \ 1 \ -5 \ NA \ 0 \ 2}$$

$$\downarrow$$

$$M_i = (1, \ 0, \ 0, \ 1, \ 0, \ 0)$$
O Input:
$$Z = (X_{obs}, M)$$

O Output: $Y \in \mathbb{R}$

Goal: Predict on **test sample** minimizing $R(f) = \mathbb{E}_{Z,Y} \left[\left(Y - f(Z) \right)^2 \right]$

Pattern-by-Pattern regression

o Assumption: linear model for complete inputs

$$y_i = \beta^\top X_i + \epsilon_i$$

/!\ With NA, the Bayes predictor does *not* necessarily remain linear

o Bayes predictor decomposition

$$f^{\star}(Z) = \sum_{m \in \{0,1\}^d} f_m^{\star}(X_{obs(m)}) \mathbf{1}_{M=m}$$

Local **Bayes prediction** for the missing pattern (M = m)

Proposition: (Le Morvan et al. 2020) Under **linear model** and several **missing data scenarios** (including MNAR), f_m^{\star} are **linear**

Pattern-by-Pattern regression

o Assumption: linear model for complete inputs

$$y_i = \beta^\top X_i + \epsilon_i$$

/!\ With NA, the Bayes predictor does *not* necessarily remain linear

o Bayes predictor decomposition

$$f^{\star}(Z) = \sum_{m \in \{0,1\}^d} f_m^{\star}(X_{obs(m)}) \mathbf{1}_{M=m}$$

Local **Bayes prediction** for the missing pattern (M = m)

Proposition: (Le Morvan et al. 2020) Under **linear model** and several **missing data scenarios** (including MNAR), f_m^{\star} are **linear** o Pattern-by-pattern predictor

 $\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m}$ Local Least-Square regression on $\left\{(X_{i,obs}, Y_i), M_i = m\right\}$

Pattern-by-Pattern regression

O Assumption: linear model for complete inputs

$$y_i = \beta^\top X_i + \epsilon_i$$

/!\ With NA, the Bayes predictor does *not* necessarily remain linear

Bayes predictor decomposition 0

$$f^{\star}(Z) = \sum_{m \in \{0,1\}^d} f_m^{\star}(X_{obs(m)}) \mathbf{1}_{M=m}$$

Local **Bayes prediction** for the missing pattern (M = m)

Proposition: (Le Morvan et al. 2020) Under linear model and several missing data scenarios (including MNAR), f_m^{\star} are **linear**

Pattern-by-pattern predictor

$$\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m}$$

$$K = \{0,1\}^d \qquad \uparrow$$

$$Local \ Least-Square \ regression \ on$$

$$\{(X_{i,obs}, Y_i), M_i = m\}$$

Theorem 1: Under Lipschitz and sub-Gaussian assumptions, $\mathscr{E}(\hat{f}) := \mathbb{E}\left[\left(f^{\star}(Z) - \hat{f}(Z)\right)^2\right] \le A \log(n) 2^d \frac{d}{n}$

- Optimal for equiprobable missing patterns $\left(p_m = \frac{1}{2d}\right)$
- o Tight for the worst case of pattern-by-pattern predictors
- **o** Sub-optimal for other distributions?

Thresholded Pattern-by-Pattern regression

- **o** Adaptivity to the missing pattern distribution to overcome the curse of dimensionality
- **o** Overfitting reduction

via **Thresholded P-by-P** predictor:

 $\hat{p}_m =$ frequency of pattern m $\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_m > \frac{d}{n}}$ Local **Least-Square** regression on $\{(X_{i,obs}, Y_i), M_i = m\}$

Thresholded Pattern-by-Pattern regression

- **o** Adaptivity to the missing pattern distribution to overcome the curse of dimensionality
- o Overfitting reduction

via Thresholded P-by-P predictor:

 $\hat{p}_{m} = \text{frequency of pattern } m$ $\hat{f}(Z) = \sum_{m \in \{0,1\}^{d}} \hat{f}_{m}(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_{m}} \ge \frac{d}{n}$ Local Least-Square regression on $\{(X_{i,obs}, Y_{i}), M_{i} = m\}$

o Definition: missing pattern complexity

$$\mathfrak{C}_p\left(\frac{d}{n}\right) = \sum_{m \in \{0,1\}^d} p_m \wedge \frac{d}{n}$$

Thresholded Pattern-by-Pattern regression

- **o** Adaptivity to the missing pattern distribution to overcome the curse of dimensionality
- **o** Overfitting reduction

via Thresholded P-by-P predictor:

 $\hat{p}_m =$ frequency of pattern m $\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_m > \frac{d}{n}}$ Local **Least-Square** regression on $\{(X_{i,obs}, Y_i), M_i = m\}$

o Definition: missing pattern complexity

$$\mathfrak{C}_p\left(\frac{d}{n}\right) = \sum_{m \in \{0,1\}^d} p_m \wedge \frac{d}{n}$$

Examples:

- 1. Uniform distribution: $\mathfrak{C}_p\left(\frac{d}{n}\right) = 2^d \frac{d}{n}$ 2. Bernoulli distribution: $M_j \sim \mathscr{B}(\epsilon)$ and $\epsilon \leq \frac{d}{n}$ n

 $\mathfrak{C}_p\left(\frac{d}{n}\right) \leq \frac{d^2}{n}$

The thresholded P-by-P predictor is near-optimal

O Minimax risk

Worst case on a class of problem
$$\mathscr{P}_p$$

 $\mathscr{E}_{\min}(p) = \inf_{\tilde{f}} \sup_{\mathbb{P} \in \mathscr{P}_p} \mathbb{E}_{\mathbb{P}} \left[\left(\tilde{f}(Z) - f^*(Z) \right)^2 \right]$
Best algorithm

where \mathscr{P}_p represents a class of data distributions **O** for which the missing pattern distribution is p**O** under Lipschitz and Sub-Gaussian assumptions

The thresholded P-by-P predictor is near-optimal

O Minimax risk

Worst case on a class of problem
$$\mathscr{P}_p$$

 $\mathscr{E}_{\min}(p) = \inf_{\tilde{f}} \sup_{\mathbb{P} \in \mathscr{P}_p} \mathbb{E}_{\mathbb{P}} \left[\left(\tilde{f}(Z) - f^*(Z) \right)^2 \right]$
Best algorithm

where \mathscr{P}_p represents a class of data distributions **O** for which the missing pattern distribution is p**O** under Lipschitz and Sub-Gaussian assumptions

Theorem 3:

$$\sigma^{2}\mathfrak{S}_{p}\left(\frac{1}{n}\right) \lesssim \mathscr{E}_{\min}\left(p\right) \leq \mathscr{E}(\hat{f}) \leq A \log(n)\mathfrak{S}_{p}\left(\frac{d}{n}\right)$$
Theorem 2

O Lower bound still holds when \mathscr{P}_p includes **MAR** missing values

Examples

1. Uniform distribution: $\mathfrak{C}_p\left(\frac{1}{n}\right) = \frac{2^d}{n}, \, \mathfrak{C}_p\left(\frac{d}{n}\right) = 2^d \frac{d}{n}$ 2. Bernoulli distribution: $\mathfrak{C}_p\left(\frac{1}{n}\right) = \frac{d}{n}, \, \mathfrak{C}_p\left(\frac{d}{n}\right) = \frac{d^2}{n}$

Conclusion

Theoretical contributions

- o New thresholded predictor
- o Adaptive upper bound
- o Near optimal

 $\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_m > \frac{d}{n}}$

$$\mathcal{L}_p\left(\frac{1}{n}\right) \lesssim \mathscr{C}_{\min}\left(\mathscr{P}\right) \leq A \log(n)\mathfrak{C}_p\left(\frac{d}{n}\right)$$

Conclusion

Theoretical contributions

- o New thresholded predictor
- o Adaptative upper bound
- o Near optimal

Numerical experiments

- **o** Thresholded P-by-P predictor:
 - o reduced variance
 - o consistent regardless of the missing scenario

 $\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_m > \frac{d}{n}}$

$$\mathcal{L}_p\left(\frac{1}{n}\right) \lesssim \mathscr{C}_{\min}\left(\mathscr{P}\right) \leq A \log(n)\mathfrak{C}_p\left(\frac{d}{n}\right)$$

Excess risk w.r.t. n with d = 8

Near-optimal rate of consistency for linear prediction with missing values

Special thanks to the Paris City Council for the financial support

Corresponding Author: alexis.ayme@sorbonne-universite.fr

