
ICML 2022

Near-optimal rate of consistency for 
linear prediction with missing values 

Alexis Ayme 
Claire Boyer   Aymeric Dieuleveut  and  Erwan Scornet 

 



Background 

NA

NA NA

Growing mass of data => NA (not attribut)/missing values 

Different sources:  

$1 $10 $100 $0

=

NA

NA
NA NA

NA

Age Job Incomes 

1. Bugs 
2. Cost 

3. Multiplication of sources (i.e. merge)   

4. Sensitive data 

NA NA

NA NA NA

NA NA NA NA NA NA

+ + =



Background 

NA

NA NA

Growing mass of data => NA (not attribut)/missing values 

Different sources:  

$1 $10 $100 $0

+

NA

NA
NA NA

NA

Age Job Income 

Any statistical analyses require complete data 

Strategy 1: complete the dataset before the 
ML process (e.g. by collaborative filtering)  

Strategy 2: adapt statistical analysis to 
handle missing values (e.g. EM algorithm to 
perform regression with NA)

1. Bugs 
2. Cost 

3. Multiplication of sources (i.e. merge)   

4. Sensitive data 

NA NA

NA NA NA

NA NA NA NA NA NA

+ + =



Background 

NA

NA NA

Growing mass of data => NA (not attribut)/missing values 

Different sources:  

1. Bugs 
2. Cost 

3. Multiplication of sources (i.e. merge)   

4. Sensitive data 

$1 $10 $100 $0

NA NA

NA NA NA

NA NA NA NA NA NA

+ + =

NA

NA
NA NA

NA

Age Job Income 

Any statistical analyses require complete data 

Strategy 1: complete the dataset before the 
ML process (e.g. by collaborative filtering)  

Strategy 2: adapt statistical analysis to 
handle missing values (e.g. EM algorithm to 
perform regression with NA)

What about supervised learning? 
i.e. prediction with NAs
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NA 1 -5 NA 0 2Xi =

Missing pattern: Mi ∈ {0,1}d

Mi = (1, 0, 0, 1, 0, 0)

Input:      Z = (Xobs, M)

Goal:  Predict on test sample minimizing 

R( f ) = #Z,Y [(Y − f(Z))2]

Output:   Y ∈ ℝ
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Second point of view :  

1) Assumption on : 
Example:  

2) Assumption on : 

GPMM (Gaussian pattern mixture model): 
  Gaussian Vector 

P(X, M) = P(M)P(X |M)

P(M)
P(M = m) = pm
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Pattern-by-Pattern regression

f ⋆(Z) = ∑
m∈{0,1}d

f ⋆
m(Xobs(m))1M=m

Bayes predictor (better prediction) decomposition

Local Bayes prediction for the missing pattern (M = m)

Proposition: (Le Morvan et al. 2020)  
Under linear model and several missing data scenarios  
(including MNAR),   are linear  f ⋆

m

yi = β⊤Xi + ϵi

 Assumption: linear model for complete inputs   

/!\ With NA, the Bayes predictor does not necessarily remain linear 

Assumption to obtain linearity
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Proposition: (Le Morvan et al. 2020)  
Under linear model and several missing data scenarios  
(including MNAR),   are linear  f ⋆

m

Theorem 1: 
Under Lipschitz and sub-Gaussian assumptions,   
            

ℰ( ̂f ) := # [(f ⋆(Z) − ̂f(Z))
2] ≤ A log(n)2d d

n
+Approx

Optimal for equiprobable missing patterns  

Tight for the worst case of pattern-by-pattern predictors  
Sub-optimal for other distributions? 

(pm = 1
2d )

yi = β⊤Xi + ϵi

 Assumption: linear model for complete inputs   

/!\ With NA, the Bayes predictor does not necessarily remain linear 
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via Thresholded P-by-P  predictor:

Overfitting reduction 
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The thresholded P-by-P predictor is near-optimal

ℰmini (p) = inf
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Best algorithm 
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under Lipschitz and Sub-Gaussian assumptions
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Numerical experiments
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Conclusion

New thresholded predictor 

Adaptative upper bound  

Near optimal  

̂f(Z) = ∑
m∈{0,1}d

̂fm(Xobs(m))1M=m1 ̂pm> d
n

σ2ℭp ( 1
n ) ≲ ℰmini (/) ≤ A log(n)ℭp ( d

n )

Theoretical contributions

MCAR

Excess risk w.r.t.  with n d = 8

MAR MNAR

Numerical experiments 

Thresholded P-by-P predictor: 

reduced variance 

consistent regardless of the 
missing scenario   



Near-optimal rate of consistency for 
linear prediction with missing values 
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