Near-optimal rate of consistency for linear prediction with missing values

Alexis Ayme

Claire Boyer Aymeric Dieuleveut and Erwan Scornet

Ínnía -

ICML 2022

Background

O Growing mass of data => NA (not attribut)/missing values

O Different sources:

- 1. Bugs
- 2. Cost

3. Multiplication of sources (i.e. merge)

4. Sensitive data

Age	Job	Incomes
		NA
		NA
NA		NA NA

Background

O Growing mass of data => NA (not attribut)/missing values

O Different sources:

- 1. Bugs
- 2. Cost

3. Multiplication of sources (i.e. merge)

			NA	NA			
					NA	NA	NA
NA	NA	NA			NA	NA	NA

4. Sensitive data

Age	Job	Income
		NA
		NA
NA		NA
		NA

- o Any statistical analyses require **complete** data
 - O Strategy 1: complete the dataset before the ML process (e.g. by collaborative filtering)
 - o Strategy 2: **adapt** statistical analysis to handle missing values (e.g. EM algorithm to perform regression with NA)

Background

O Growing mass of data => NA (not attribut)/missing values

O Different sources:

- 1. Bugs
- 2. Cost

3. Multiplication of sources (i.e. merge)

				NA	NA			
						NA	NA	NA
N	A	NA	NA			NA	NA	NA

- o Any statistical analyses require **complete** data
 - O Strategy 1: complete the dataset before the ML process (e.g. by collaborative filtering)
 - o Strategy 2: **adapt** statistical analysis to handle missing values (e.g. EM algorithm to perform regression with NA)

What about **supervised learning**? i.e. prediction with NAs

4. Sensitive data

Age	Job	Income
		NA
		NA
NA		NA
		NA

O Missing pattern: $M_i \in \{0,1\}^d$

$$X_{i} = \boxed{|\mathsf{NA}| \ 1 \ -5 \ |\mathsf{NA}| \ 0 \ 2}$$

$$\downarrow$$

$$M_{i} = (1, \ 0, \ 0, \ 1, \ 0, \ 0)$$

O Input: $Z = (X_{obs}, M)$

• O Missing pattern: $M_i \in \{0,1\}^d$

O Input:
$$Z = (X_{obs}, M)$$

O Output: *Y* ∈ \mathbb{R}

Goal: Predict on **test sample** minimizing $R(f) = \mathbb{E}_{Z,Y} \left[\left(Y - f(Z) \right)^2 \right]$

Zoo of assumptions on NA

Zoo of assumptions on NA

Pattern-by-Pattern regression

o Assumption: linear model for complete inputs

/!\ With NA, the Bayes predictor does not necessarily remain linear

o Bayes predictor (better prediction) decomposition

$$f^{\star}(Z) = \sum_{m \in \{0,1\}^d} f_m^{\star}(X_{obs(m)}) \mathbf{1}_{M=m}$$

Local **Bayes prediction** for the missing pattern (M = m)

Assumption to obtain linearity

Proposition: (Le Morvan et al. 2020) Under **linear model** and several **missing data scenarios** (including MNAR), f_m^{\star} are **linear**

Pattern-by-Pattern regression

o Assumption: linear model for complete inputs

 $y_i = \beta^{\mathsf{T}} X_i + \epsilon_i$

/!\ With NA, the Bayes predictor does not necessarily remain linear

o Bayes predictor decomposition

$$f^{\star}(Z) = \sum_{m \in \{0,1\}^d} f_m^{\star}(X_{obs(m)}) \mathbf{1}_{M=m}$$

Local **Bayes prediction** for the missing pattern (M = m)

Proposition: (Le Morvan et al. 2020) Under **linear model** and several **missing data scenarios** (including MNAR), f_m^{\star} are **linear** o Pattern-by-pattern predictor

$$\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m}$$
Local Least-Square regression on
$$\{(X_{i,obs}, Y_i), M_i = m\}$$

Pattern-by-Pattern regression

o Assumption: linear model for complete inputs

 $y_i = \beta^{\mathsf{T}} X_i + \epsilon_i$

/!\ With NA, the Bayes predictor does not necessarily remain linear

o Bayes predictor decomposition

$$f^{\star}(Z) = \sum_{m \in \{0,1\}^d} f_m^{\star}(X_{obs(m)}) \mathbf{1}_{M=m}$$

Local **Bayes prediction** for the missing pattern (M = m)

Proposition: (Le Morvan et al. 2020) Under **linear model** and several **missing data scenarios** (including MNAR), f_m^{\star} are **linear** o Pattern-by-pattern predictor

$$\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m}$$
Local Least-Square regression on
$$\{(X_{i,obs}, Y_i), M_i = m\}$$

Theorem 1: Under Lipschitz and sub-Gaussian assumptions, $\mathscr{C}(\hat{f}) := \mathbb{E}\left[\left(f^{\star}(Z) - \hat{f}(Z)\right)^2\right] \le A \log(n) 2^d \frac{d}{n} + \text{Approx}$

• Optimal for equiprobable missing patterns $\left(p_m = \frac{1}{2^d}\right)$ • Tight for the worst case of pattern-by-pattern predictors • Sub-optimal for other distributions?

Thresholded Pattern-by-Pattern regression

- o Adaptivity to the missing pattern distribution to overcome the curse of dimensionality
- o Overfitting reduction
- via Thresholded P-by-P predictor:

$$\hat{p}_m = \text{frequency of pattern } m$$

$$\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_m > \frac{d}{n}}$$

Local **Least-Square** regression on $\{(X_{i,obs}, Y_i), M_i = m\}$

Thresholded Pattern-by-Pattern regression

- O Adaptivity to the missing pattern distribution to overcome the curse of dimensionality
- ${\bf o}$ Overfitting reduction
- via Thresholded P-by-P predictor:

 $\hat{p}_{m} = \text{frequency of pattern } m$ $\hat{f}(Z) = \sum_{m \in \{0,1\}^{d}} \hat{f}_{m}(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_{m} > \frac{d}{n}}$

Local Least-Square regression on $\left\{(X_{i,obs}, Y_i), M_i = m\right\}$

o Definition: missing pattern complexity

$$\mathfrak{G}_p\left(\frac{d}{n}\right) = \sum_{m \in \{0,1\}^d} p_m \wedge \frac{d}{n}$$

Theorem 2: (Main result)
Under Lipschitz and Sub-Gaussian assumptions
$$\mathscr{C}(\hat{f}) \le A \log(n) \mathfrak{C}_p\left(\frac{d}{n}\right) + \text{Approx}$$

Thresholded Pattern-by-Pattern regression

- O Adaptivity to the missing pattern distribution to overcome the curse of dimensionality
- o Overfitting reduction
- via Thresholded P-by-P predictor:

 $\hat{p}_m = \text{frequency of pattern } m$ $\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_m > \frac{d}{n}}$

Local Least-Square regression on $\left\{(X_{i,obs}, Y_i), M_i = m\right\}$

o Definition: missing pattern complexity

$$\mathfrak{G}_p\left(\frac{d}{n}\right) = \sum_{m \in \{0,1\}^d} p_m \wedge \frac{d}{n}$$

Examples:

1. Uniform distribution: $\mathfrak{C}_p\left(\frac{d}{n}\right) = 2^d \frac{d}{n}$ 2. Bernoulli distribution: $M_j \sim \mathscr{B}(\epsilon)$ and $\epsilon \leq \frac{d}{n}$ $\mathfrak{C}_p\left(\frac{d}{n}\right) \leq \frac{d^2}{n}$

O Minimax risk

Worst case on a class of problem
$$\mathscr{P}_p$$

 $\mathscr{C}_{\min}(p) = \inf_{\tilde{f}} \sup_{\mathbb{P} \in \mathscr{P}_p} \mathbb{E}_{\mathbb{P}} \left[\left(\tilde{f}(Z) - f^{\star}(Z) \right)^2 \right]$
Best algorithm

where \mathscr{P}_p represents a class of data distributions O for which the missing pattern distribution is pO under Lipschitz and Sub-Gaussian assumptions

O Minimax risk

Worst case on a class of problem
$$\mathscr{P}_p$$

 $\mathscr{E}_{\min}(p) = \inf_{\tilde{f}} \sup_{\mathbb{P} \in \mathscr{P}_p} \mathbb{E}_{\mathbb{P}} \left[\left(\tilde{f}(Z) - f^{\star}(Z) \right)^2 \right]$
Best algorithm

where \mathscr{P}_p represents a class of data distributions O for which the missing pattern distribution is pO under Lipschitz and Sub-Gaussian assumptions

Theorem 3:

$$\sigma^{2}\mathfrak{C}_{p}\left(\frac{1}{n}\right) \lesssim \mathscr{C}_{\min}\left(p\right) \leq \mathscr{C}(\hat{f}) \leq A \log(n)\mathfrak{C}_{p}\left(\frac{d}{n}\right)$$
Theorem 2

O Lower bound still holds when \mathscr{P}_p includes \mathbf{MAR} missing values

Examples

1. **Uniform** distribution: $\mathfrak{C}_p\left(\frac{1}{n}\right)$

2. Bernoulli distribution: $\mathfrak{G}_p\left(\frac{1}{n}\right)$

$$) = \frac{2^{a}}{n}, \mathfrak{C}_{p}\left(\frac{d}{n}\right) = 2^{d}\frac{d}{n}$$
$$) = \frac{d}{n}, \mathfrak{C}_{p}\left(\frac{d}{n}\right) = \frac{d^{2}}{n}$$

o Inference POV

Theorem 3:

$$\sigma^{2}\mathfrak{G}_{p}\left(\frac{1}{n}\right) \lesssim \mathscr{C}_{\min}\left(p\right) \leq \mathscr{C}(\hat{f}) \leq A \log(n)\mathfrak{G}_{p}\left(\frac{d}{n}\right)$$
Theorem 2

O Lower bound still holds when \mathscr{P}_p includes MAR missing values

Examples

2. Bernoulli distribution: $\mathfrak{C}_p\left(\frac{1}{n}\right)$

1. Uniform distribution:
$$\mathfrak{C}_p\left(\frac{1}{n}\right) = \frac{2^d}{n}, \, \mathfrak{C}_p\left(\frac{d}{n}\right) = 2^d \frac{d}{n}$$

2. Bernoulli distribution: $\mathfrak{C}_p\left(\frac{1}{n}\right) = \frac{d}{n}, \, \mathfrak{C}_p\left(\frac{d}{n}\right) = \frac{d^2}{n}$

o Inference POV

O Lower bound still holds when \mathscr{P}_p includes **MAR** missing values

Examples

1. Uniform distribution: $\mathfrak{C}_p\left(\frac{1}{n}\right) = \frac{2^d}{n}, \mathfrak{C}_p\left(\frac{d}{n}\right) = 2^d \frac{d}{n}$ 2. Bernoulli distribution: $\mathfrak{G}_p\left(\frac{1}{n}\right) = \frac{d}{n}, \, \mathfrak{G}_p\left(\frac{d}{n}\right) = \frac{d^2}{n}$

o Supervised learning POV

Numerical experiments

MCAR

Excess risk w.r.t. n with d = 8

Conclusion

Theoretical contributions

- o New thresholded predictor
- o Adaptative upper bound
- o Near optimal

Numerical experiments

- Thresholded P-by-P predictor: • reduced variance
 - o consistent regardless of the missing scenario

$$\hat{f}(Z) = \sum_{m \in \{0,1\}^d} \hat{f}_m(X_{obs(m)}) \mathbf{1}_{M=m} \mathbf{1}_{\hat{p}_m > \frac{d}{n}}$$

$$\sigma^2 \mathfrak{G}_p\left(\frac{1}{n}\right) \lesssim \mathscr{C}_{\min}\left(\mathscr{P}\right) \leq A \log(n) \mathfrak{G}_p\left(\frac{d}{n}\right)$$

Excess risk w.r.t. n with d = 8

Near-optimal rate of consistency for linear prediction with missing values

Corresponding Author: alexis.ayme@sorbonne-universite.fr

Special thanks to the Paris City Council for the financial support